Посилання:Exact Solutions of the Equations of Relativistic Hydrodynamics Representing Potential Flows / M.S. Borshch, V.I. Zhdanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 24 назв. — англ.
Підтримка:This paper is a contribution to the Proceedings of the Seventh International Conference “Symmetry in Nonlinear Mathematical Physics” (June 24–30, 2007, Kyiv, Ukraine). We are thankful to the referees of our paper for helpful remarks and suggestions. This work has been supported in part by “Cosmomicrophysica” program of National Academy of Sciences of Ukraine.
We use a connection between relativistic hydrodynamics and scalar field theory to generate exact analytic solutions describing non-stationary inhomogeneous flows of the perfect fluid with one-parametric equation of state (EOS) p = p(ε). For linear EOS p = κε we obtain self-similar solutions in the case of plane, cylindrical and spherical symmetries. In the case of extremely stiff EOS (κ = 1) we obtain ''monopole + dipole'' and ''monopole + quadrupole'' axially symmetric solutions. We also found some nonlinear EOSs that admit analytic solutions.