Показати простий запис статті
dc.contributor.author |
Álvarez López, J.A. |
|
dc.contributor.author |
Calaza, M. |
|
dc.contributor.author |
Franco, C. |
|
dc.date.accessioned |
2019-02-13T17:16:09Z |
|
dc.date.available |
2019-02-13T17:16:09Z |
|
dc.date.issued |
2015 |
|
dc.identifier.citation |
A Perturbation of the Dunkl Harmonic Oscillator on the Line / J.A. Álvarez López, M. Calaza, C. Franco // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 28 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 47A55; 47B25; 33C45 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2015.059 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147130 |
|
dc.description.abstract |
Let Jσ be the Dunkl harmonic oscillator on R (σ>−1/2. For 0<u<1 and ξ>0, it is proved that, if σ>u−1/2, then the operator U=Jσ+ξ|x|⁻²u, with appropriate domain, is essentially self-adjoint in L²(R,|x|²σdx), the Schwartz space S is a core of Ū¹/², and Ū has a discrete spectrum, which is estimated in terms of the spectrum of Ĵσ. A generalization Jσ,τ of Jσ is also considered by taking different parameters σ and τ on even and odd functions. Then extensions of the above result are proved for Jσ,τ, where the perturbation has an additional term involving, either the factor x⁻¹ on odd functions, or the factor x on even functions. Versions of these results on R+ are derived. |
uk_UA |
dc.description.sponsorship |
The first author was partially supported by MICINN, Grants MTM2011-25656 and MTM2014-
56950-P, and by Xunta de Galicia, Grant Consolidaci´on e estructuraci´on 2015 GPC GI-1574.
The third author has received financial support from the Xunta de Galicia and the European
Union (European Social Fund - ESF). |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
A Perturbation of the Dunkl Harmonic Oscillator on the Line |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті