Показати простий запис статті

dc.contributor.author Álvarez López, J.A.
dc.contributor.author Calaza, M.
dc.contributor.author Franco, C.
dc.date.accessioned 2019-02-13T17:16:09Z
dc.date.available 2019-02-13T17:16:09Z
dc.date.issued 2015
dc.identifier.citation A Perturbation of the Dunkl Harmonic Oscillator on the Line / J.A. Álvarez López, M. Calaza, C. Franco // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 28 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 47A55; 47B25; 33C45
dc.identifier.other DOI:10.3842/SIGMA.2015.059
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147130
dc.description.abstract Let Jσ be the Dunkl harmonic oscillator on R (σ>−1/2. For 0<u<1 and ξ>0, it is proved that, if σ>u−1/2, then the operator U=Jσ+ξ|x|⁻²u, with appropriate domain, is essentially self-adjoint in L²(R,|x|²σdx), the Schwartz space S is a core of Ū¹/², and Ū has a discrete spectrum, which is estimated in terms of the spectrum of Ĵσ. A generalization Jσ,τ of Jσ is also considered by taking different parameters σ and τ on even and odd functions. Then extensions of the above result are proved for Jσ,τ, where the perturbation has an additional term involving, either the factor x⁻¹ on odd functions, or the factor x on even functions. Versions of these results on R+ are derived. uk_UA
dc.description.sponsorship The first author was partially supported by MICINN, Grants MTM2011-25656 and MTM2014- 56950-P, and by Xunta de Galicia, Grant Consolidaci´on e estructuraci´on 2015 GPC GI-1574. The third author has received financial support from the Xunta de Galicia and the European Union (European Social Fund - ESF). uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title A Perturbation of the Dunkl Harmonic Oscillator on the Line uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис