Показати простий запис статті
dc.contributor.author |
Ormerod, C.M. |
|
dc.contributor.author |
Yamada, Y. |
|
dc.date.accessioned |
2019-02-13T17:08:06Z |
|
dc.date.available |
2019-02-13T17:08:06Z |
|
dc.date.issued |
2015 |
|
dc.identifier.citation |
From Polygons to Ultradiscrete Painlevé Equations / C.M. Ormerod, Y. Yamada // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 54 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 14T05; 14H70; 39A13 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2015.056 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147126 |
|
dc.description.abstract |
The rays of tropical genus one curves are constrained in a way that defines a bounded polygon. When we relax this constraint, the resulting curves do not close, giving rise to a system of spiraling polygons. The piecewise linear transformations that preserve the forms of those rays form tropical rational presentations of groups of affine Weyl type. We present a selection of spiraling polygons with three to eleven sides whose groups of piecewise linear transformations coincide with the Bäcklund transformations and the evolution equations for the ultradiscrete Painlevé equations. |
uk_UA |
dc.description.sponsorship |
Christopher M. Ormerod would like to acknowledge Eric Rains for his helpful discussions. Y. Yamada
is supported by JSPS KAKENHI Grant Number 26287018. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
From Polygons to Ultradiscrete Painlevé Equations |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті