Показати простий запис статті

dc.contributor.author Ormerod, C.M.
dc.contributor.author Yamada, Y.
dc.date.accessioned 2019-02-13T17:08:06Z
dc.date.available 2019-02-13T17:08:06Z
dc.date.issued 2015
dc.identifier.citation From Polygons to Ultradiscrete Painlevé Equations / C.M. Ormerod, Y. Yamada // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 54 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 14T05; 14H70; 39A13
dc.identifier.other DOI:10.3842/SIGMA.2015.056
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147126
dc.description.abstract The rays of tropical genus one curves are constrained in a way that defines a bounded polygon. When we relax this constraint, the resulting curves do not close, giving rise to a system of spiraling polygons. The piecewise linear transformations that preserve the forms of those rays form tropical rational presentations of groups of affine Weyl type. We present a selection of spiraling polygons with three to eleven sides whose groups of piecewise linear transformations coincide with the Bäcklund transformations and the evolution equations for the ultradiscrete Painlevé equations. uk_UA
dc.description.sponsorship Christopher M. Ormerod would like to acknowledge Eric Rains for his helpful discussions. Y. Yamada is supported by JSPS KAKENHI Grant Number 26287018. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title From Polygons to Ultradiscrete Painlevé Equations uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис