Анотація:
Let G be a simply connected simple algebraic group over C, B and B− be two opposite Borel subgroups in G and W be the Weyl group. For u, v∈W, it is known that the coordinate ring C[Gu,v] of the double Bruhat cell Gu,v=BuB∩B−vB− is isomorphic to an upper cluster algebra A¯(i)C and the generalized minors {Δ(k;i)} are the cluster variables belonging to a given initial seed in C[Gu,v] [Berenstein A., Fomin S., Zelevinsky A., Duke Math. J. 126 (2005), 1-52]. In the case G=SLr₊₁(C), v=e and some special u∈W, we shall describe the generalized minors {Δ(k;i)} as summations of monomial realizations of certain Demazure crystals.