Показати простий запис статті

dc.contributor.author Arvesú, J.
dc.contributor.author Ramírez-Aberasturis, A.M.
dc.date.accessioned 2019-02-12T18:23:59Z
dc.date.available 2019-02-12T18:23:59Z
dc.date.issued 2015
dc.identifier.citation On the q-Charlier Multiple Orthogonal Polynomials / J. Arvesú, A.M. Ramírez-Aberasturis // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 20 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 42C05; 33E30; 33C47; 33C65
dc.identifier.other DOI:10.3842/SIGMA.2015.026
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147005
dc.description.abstract We introduce a new family of special functions, namely q-Charlier multiple orthogonal polynomials. These polynomials are orthogonal with respect to q-analogues of Poisson distributions. We focus our attention on their structural properties. Raising and lowering operators as well as Rodrigues-type formulas are obtained. An explicit representation in terms of a q-analogue of the second of Appell's hypergeometric functions is given. A high-order linear q-difference equation with polynomial coefficients is deduced. Moreover, we show how to obtain the nearest neighbor recurrence relation from some difference operators involved in the Rodrigues-type formula. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue on Exact Solvability and Symmetry Avatars in honour of Luc Vinet. The full collection is available at http://www.emis.de/journals/SIGMA/ESSA2014.html. The research of J. Arves´u was partially supported by the research grant MTM2012-36732-C03-01 (Ministerio de Econom´ıa y Competitividad) of Spain. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title On the q-Charlier Multiple Orthogonal Polynomials uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис