Показати простий запис статті
dc.contributor.author |
Blondeau-Fournier, O. |
|
dc.contributor.author |
Mathieu, P. |
|
dc.date.accessioned |
2019-02-12T18:11:31Z |
|
dc.date.available |
2019-02-12T18:11:31Z |
|
dc.date.issued |
2015 |
|
dc.identifier.citation |
Schur Superpolynomials: Combinatorial Definition and Pieri Rule / O. Blondeau-Fournier, P. Mathieu // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 14 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 05E05 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2015.021 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/146998 |
|
dc.description.abstract |
Schur superpolynomials have been introduced recently as limiting cases of the Macdonald superpolynomials. It turns out that there are two natural super-extensions of the Schur polynomials: in the limit q=t=0 and q=t→∞, corresponding respectively to the Schur superpolynomials and their dual. However, a direct definition is missing. Here, we present a conjectural combinatorial definition for both of them, each being formulated in terms of a distinct extension of semi-standard tableaux. These two formulations are linked by another conjectural result, the Pieri rule for the Schur superpolynomials. Indeed, and this is an interesting novelty of the super case, the successive insertions of rows governed by this Pieri rule do not generate the tableaux underlying the Schur superpolynomials combinatorial construction, but rather those pertaining to their dual versions. As an aside, we present various extensions of the Schur bilinear identity. |
uk_UA |
dc.description.sponsorship |
We thank Luc Lapointe for useful discussions and critical comments on the manuscript. We also
thank Patrick Desrosiers for his collaboration at the early stages of this project. This work is
supported by NSERC and FRQNT. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Schur Superpolynomials: Combinatorial Definition and Pieri Rule |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті