Показати простий запис статті
dc.contributor.author |
Quesne, C. |
|
dc.date.accessioned |
2019-02-11T15:30:54Z |
|
dc.date.available |
2019-02-11T15:30:54Z |
|
dc.date.issued |
2011 |
|
dc.identifier.citation |
Revisiting the Symmetries of the Quantum Smorodinsky-Winternitz System in D Dimensions / C. Quesne // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 90 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 20C35; 81R05; 81R12 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2011.035 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/146804 |
|
dc.description.abstract |
The D-dimensional Smorodinsky-Winternitz system, proposed some years ago by Evans, is re-examined from an algebraic viewpoint. It is shown to possess a potential algebra, as well as a dynamical potential one, in addition to its known symmetry and dynamical algebras. The first two are obtained in hyperspherical coordinates by introducing D auxiliary continuous variables and by reducing a 2D-dimensional harmonic oscillator Hamiltonian. The su(2D) symmetry and w(2D)⊕s sp(4D,R) dynamical algebras of this Hamiltonian are then transformed into the searched for potential and dynamical potential algebras of the Smorodinsky-Winternitz system. The action of generators on wavefunctions is given in explicit form for D=2. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue “Symmetry, Separation, Super-integrability and Special Functions (S4)”. The full collection is available at http://www.emis.de/journals/SIGMA/S4.html. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Revisiting the Symmetries of the Quantum Smorodinsky-Winternitz System in D Dimensions |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті