Показати простий запис статті
dc.contributor.author |
Stoilova, N.I. |
|
dc.contributor.author |
Van der Jeugt, J. |
|
dc.date.accessioned |
2019-02-11T15:27:39Z |
|
dc.date.available |
2019-02-11T15:27:39Z |
|
dc.date.issued |
2011 |
|
dc.identifier.citation |
An Exactly Solvable Spin Chain Related to Hahn Polynomials /N.I. Stoilova, J. Van der Jeugt // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 22 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 81P45; 33C45 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2011.033 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/146802 |
|
dc.description.abstract |
We study a linear spin chain which was originally introduced by Shi et al. [Phys. Rev. A 71 (2005), 032309, 5 pages], for which the coupling strength contains a parameter α and depends on the parity of the chain site. Extending the model by a second parameter β, it is shown that the single fermion eigenstates of the Hamiltonian can be computed in explicit form. The components of these eigenvectors turn out to be Hahn polynomials with parameters (α,β) and (α+1,β−1). The construction of the eigenvectors relies on two new difference equations for Hahn polynomials. The explicit knowledge of the eigenstates leads to a closed form expression for the correlation function of the spin chain. We also discuss some aspects of a q-extension of this model. |
uk_UA |
dc.description.sponsorship |
N.I. Stoilova would like to thank Professor H.D. Doebner (Clausthal, Germany) for constructive discussions. N.I. Stoilova was supported by project P6/02 of the Interuniversity Attraction Poles Programme (Belgian State – Belgian Science Policy) and by the Humboldt Foundation. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
An Exactly Solvable Spin Chain Related to Hahn Polynomials |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті