Показати простий запис статті

dc.contributor.author Stoilova, N.I.
dc.contributor.author Van der Jeugt, J.
dc.date.accessioned 2019-02-11T15:27:39Z
dc.date.available 2019-02-11T15:27:39Z
dc.date.issued 2011
dc.identifier.citation An Exactly Solvable Spin Chain Related to Hahn Polynomials /N.I. Stoilova, J. Van der Jeugt // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 22 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 81P45; 33C45
dc.identifier.other DOI:10.3842/SIGMA.2011.033
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/146802
dc.description.abstract We study a linear spin chain which was originally introduced by Shi et al. [Phys. Rev. A 71 (2005), 032309, 5 pages], for which the coupling strength contains a parameter α and depends on the parity of the chain site. Extending the model by a second parameter β, it is shown that the single fermion eigenstates of the Hamiltonian can be computed in explicit form. The components of these eigenvectors turn out to be Hahn polynomials with parameters (α,β) and (α+1,β−1). The construction of the eigenvectors relies on two new difference equations for Hahn polynomials. The explicit knowledge of the eigenstates leads to a closed form expression for the correlation function of the spin chain. We also discuss some aspects of a q-extension of this model. uk_UA
dc.description.sponsorship N.I. Stoilova would like to thank Professor H.D. Doebner (Clausthal, Germany) for constructive discussions. N.I. Stoilova was supported by project P6/02 of the Interuniversity Attraction Poles Programme (Belgian State – Belgian Science Policy) and by the Humboldt Foundation. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title An Exactly Solvable Spin Chain Related to Hahn Polynomials uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис