Показати простий запис статті
| dc.contributor.author | 
Douglas, A. | 
 | 
| dc.contributor.author | 
Repka, J. | 
 | 
| dc.date.accessioned | 
2019-02-10T10:47:44Z | 
 | 
| dc.date.available | 
2019-02-10T10:47:44Z | 
 | 
| dc.date.issued | 
2014 | 
 | 
| dc.identifier.citation | 
The GraviGUT Algebra Is not a Subalgebra of E₈, but E₈ Does Contain an Extended GraviGUT Algebra / A. Douglas, J. Repka // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 13 назв. — англ. | 
uk_UA | 
| dc.identifier.issn | 
1815-0659 | 
 | 
| dc.identifier.other | 
2010 Mathematics Subject Classification: 17B05; 17B10; 17B20; 17B25; 17B81 | 
 | 
| dc.identifier.other | 
DOI:10.3842/SIGMA.2014.072 | 
 | 
| dc.identifier.uri | 
http://dspace.nbuv.gov.ua/handle/123456789/146626 | 
 | 
| dc.description.abstract | 
The (real) GraviGUT algebra is an extension of the spin(11,3) algebra by a 64-dimensional Lie algebra, but there is some ambiguity in the literature about its definition. Recently, Lisi constructed an embedding of the GraviGUT algebra into the quaternionic real form of E₈. We clarify the definition, showing that there is only one possibility, and then prove that the GraviGUT algebra cannot be embedded into any real form of E₈. We then modify Lisi's construction to create true Lie algebra embeddings of the extended GraviGUT algebra into E₈ We classify these embeddings up to inner automorphism. | 
uk_UA | 
| dc.description.sponsorship | 
The work of A.D. is partially supported by a research grant from the
Professional Staf f Congress/ City University of New York (PSC/CUNY). The work of J.R. is
partially supported by the Natural Sciences and Engineering Research Council (NSERC). The
authors would also like to thank the anonymous referees for valuable comments. | 
uk_UA | 
| dc.language.iso | 
en | 
uk_UA | 
| dc.publisher | 
Інститут математики НАН України | 
uk_UA | 
| dc.relation.ispartof | 
Symmetry, Integrability and Geometry: Methods and Applications | 
 | 
| dc.title | 
The GraviGUT Algebra Is not a Subalgebra of E₈, but E₈ Does Contain an Extended GraviGUT Algebra | 
uk_UA | 
| dc.type | 
Article | 
uk_UA | 
| dc.status | 
published earlier | 
uk_UA | 
             
        
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті