Наукова електронна бібліотека
періодичних видань НАН України

Asymptotic Analysis of the Ponzano-Regge Model with Non-Commutative Metric Boundary Data

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Oriti, D.
dc.contributor.author Raasakka, M.
dc.date.accessioned 2019-02-10T10:16:30Z
dc.date.available 2019-02-10T10:16:30Z
dc.date.issued 2014
dc.identifier.citation Asymptotic Analysis of the Ponzano-Regge Model with Non-Commutative Metric Boundary Data / D. Oriti, M. Raasakka // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 63 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 83C45; 81R60; 83C27; 83C80; 81S10; 53D55
dc.identifier.other DOI:10.3842/SIGMA.2014.067
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/146624
dc.description.abstract We apply the non-commutative Fourier transform for Lie groups to formulate the non-commutative metric representation of the Ponzano-Regge spin foam model for 3d quantum gravity. The non-commutative representation allows to express the amplitudes of the model as a first order phase space path integral, whose properties we consider. In particular, we study the asymptotic behavior of the path integral in the semi-classical limit. First, we compare the stationary phase equations in the classical limit for three different non-commutative structures corresponding to the symmetric, Duflo and Freidel-Livine-Majid quantization maps. We find that in order to unambiguously recover discrete geometric constraints for non-commutative metric boundary data through the stationary phase method, the deformation structure of the phase space must be accounted for in the variational calculus. When this is understood, our results demonstrate that the non-commutative metric representation facilitates a convenient semi-classical analysis of the Ponzano-Regge model, which yields as the dominant contribution to the amplitude the cosine of the Regge action in agreement with previous studies. We also consider the asymptotics of the SU(2) 6j-symbol using the non-commutative phase space path integral for the Ponzano-Regge model, and explain the connection of our results to the previous asymptotic results in terms of coherent states. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue on Deformations of Space-Time and its Symmetries. The full collection is available at http://www.emis.de/journals/SIGMA/space-time.html. We are grateful for the anonymous referees for their constructive questions and comments, which led to several improvements to the original manuscript. We would like to thank A. Baratin for several useful discussions on the non-commutative Fourier transform and spin foam models. We also thank C. Guedes, F. Hellmann and W. Kaminski for several discussions. This work was supported by the A. von Humboldt Stiftung, through a Sofja Kovalevskaja Prize, which is gratefully acknowledged. The work of M. Raasakka was partially supported by Emil Aaltonen Foundation. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Asymptotic Analysis of the Ponzano-Regge Model with Non-Commutative Metric Boundary Data uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис