Показати простий запис статті
dc.contributor.author |
Mayrand, M. |
|
dc.date.accessioned |
2019-02-09T21:13:10Z |
|
dc.date.available |
2019-02-09T21:13:10Z |
|
dc.date.issued |
2014 |
|
dc.identifier.citation |
Particle Motion in Monopoles and Geodesics on Cones/ M. Mayrand // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 35 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 70H06; 34A26; 53B50 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2014.102 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/146546 |
|
dc.description.abstract |
The equations of motion of a charged particle in the field of Yang's SU(2) monopole in 5-dimensional Euclidean space are derived by applying the Kaluza-Klein formalism to the principal bundle R⁸∖{0}→R⁵∖{0} obtained by radially extending the Hopf fibration S⁷→S⁴, and solved by elementary methods. The main result is that for every particle trajectory r:I→R⁵∖{0}, there is a 4-dimensional cone with vertex at the origin on which r is a geodesic. We give an explicit expression of the cone for any initial conditions. |
uk_UA |
dc.description.sponsorship |
The author is grateful to Professor Niky Kamran for his constant guidance and invaluable
suggestions. The author would also like to thank the anonymous referees who provided helpful
comments, corrections and reference suggestions. This work was supported by the NSERC
USRA program, grant number RGPIN 105490-2011. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Particle Motion in Monopoles and Geodesics on Cones |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті