Показати простий запис статті

dc.contributor.author Arnlind, J.
dc.contributor.author Hoppe, J.
dc.date.accessioned 2019-02-09T09:00:43Z
dc.date.available 2019-02-09T09:00:43Z
dc.date.issued 2010
dc.identifier.citation Discrete Minimal Surface Algebras / J. Arnlind, J. Hoppe // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 17 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 81R10; 06B15
dc.identifier.other DOI:10.3842/SIGMA.2010.042
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/146344
dc.description.abstract We consider discrete minimal surface algebras (DMSA) as generalized noncommutative analogues of minimal surfaces in higher dimensional spheres. These algebras appear naturally in membrane theory, where sequences of their representations are used as a regularization. After showing that the defining relations of the algebra are consistent, and that one can compute a basis of the enveloping algebra, we give several explicit examples of DMSAs in terms of subsets of sln (any semi-simple Lie algebra providing a trivial example by itself). A special class of DMSAs are Yang-Mills algebras. The representation graph is introduced to study representations of DMSAs of dimension d ≤ 4, and properties of representations are related to properties of graphs. The representation graph of a tensor product is (generically) the Cartesian product of the corresponding graphs. We provide explicit examples of irreducible representations and, for coinciding eigenvalues, classify all the unitary representations of the corresponding algebras. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue “Noncommutative Spaces and Fields”. The full collection is available at http://www.emis.de/journals/SIGMA/noncommutative.html. We would like to thank the Marie Curie Research Training Network ENIGMA and the Swedish Research Council, as well as the IHES, the Sonderforschungsbereich “Raum-Zeit-Materie” (SFB647) and ETH Z¨urich, for financial support respectively hospitality – and Martin Bordemann for many discussions and collaboration on related topics. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Discrete Minimal Surface Algebras uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис