Показати простий запис статті
dc.contributor.author |
Guha, P. |
|
dc.contributor.author |
Olver, P.J. |
|
dc.date.accessioned |
2019-02-07T20:04:28Z |
|
dc.date.available |
2019-02-07T20:04:28Z |
|
dc.date.issued |
2006 |
|
dc.identifier.citation |
Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation / P. Guha, P.J. Olver // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 26 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2000 Mathematics Subject Classification: 53A07; 53B50 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/146168 |
|
dc.description.abstract |
We derive the 2-component Camassa-Holm equation and corresponding N = 1 super generalization as geodesic flows with respect to the H1 metric on the extended Bott-Virasoro and superconformal groups, respectively. |
uk_UA |
dc.description.sponsorship |
One of the authors (PG) would like to thank Professor Andy Hone for various information about the two component Camassa–Holm equation. PG is also grateful to Professor Valentin Ovsienko for various stimulating discussions. PG would like to thank Professor Dieter Mayer at TU Clausthal, where the part of work was done in a stimulating atmosphere. This work was partially supported by the DFG Research Group “Zeta functions and locally symmetric spaces” which is gratefully acknowledged. The work of the second author was supported in part by NSF Grant DMS 05–05293. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті