Проведено математическое описание модели зарождения трещины в связующем композита при изгибе. Определение неизвестных параметров, характеризующих зародышевую трещину, сводится к решению сингулярного интегрального уравнения. Построена замкнутая система нелинейных алгебраических уравнений, решение которой позволяет прогнозировать трещинообразование в композите при изгибе в зависимости от геометрических и механических характеристик связующего и включений. Сформулирован критерий зарождения трещины в композите при действии изгибающих нагрузок.
Відомо, що багатокомпонентні структури більш надійні та довговічні, ніж однорідні. На етапі проектування нових конструкцій з композиційних матеріалів необхідно враховувати випадки, коли у матеріалі можуть з'явитися тріщини. Метою цього дослідження є побудова розрахункової моделі для композитного тіла, що включає зв'язування, це дає змогу розрахувати граничні зовнішні згинальні навантаження, за яких відбувається розтріскування в композиті. Розглянуто тонку пластину із пружного ізотропного середовища (матриці) та розподілених в ній включень (волокон) з іншого пружного матеріалу в плиті під час згинання. Проведено математичний опис моделі зародження тріщини у зв'язувальному композиті під час згинання. Використовується теорія аналітичних функцій та метод степеневих рядів. Визначення невідомих параметрів, що характеризують зародкову тріщину, зводиться до розв’язання сингулярного інтегрального рівняння. Побудовано замкнуту систему нелінійних алгебраїчних рівнянь, розв'язок якої дозволяє прогнозувати тріщиноутворення в композиті під час згинання залежно від геометричних та механічних характеристик з’єднувального та включень. Сформульовано критерій зародження тріщини в композиті під впливом згинних навантажень. Розмір обмежувальної мінімальної зони попередньої фракції, за якої відбувається зародження тріщини, рекомендується розглядати як конструктивну характеристику з’єднувального матеріалу.
It is known that multi-component structures are more reliable and durable than homogeneous ones. At the design stage of new structures from composite materials, it is necessary to take into account the cases when cracks may appear in the material. The purpose of this paper is to construct a computational model for a binder-inclusion composite body, which makes it possible to calculate the limiting external bending loads at which cracking occurs in a composite. A thin plate of elastic isotropic medium (matrix) and inclusions (fibers) from other elastic material, distributed in the plate under bending, is considered. A mathematical description of a crack initiation model in a binder composite under bending is carried out. The theory of analytic functions and the method of power series are used. The determination of the unknown parameters characterizing an initial crack reduces to solving a singular integral equation. A closed system of nonlinear algebraic equations is constructed, whose solution helps to predict cracks in a composite under bending, depending on the geometric and mechanical characteristics of both the binder and the inclusions. The criterion of crack initiation in a composite under the influence of bending loads is formulated. The size of the limiting minimum pre-fraction zone, at which crack initiation occurs is recommended to be considered as a design characteristic of a binder material.