Даны введение и краткий обзор перспективного класса моделей — вероятностных моделей зависимостей на основе ациклических ориентированных графов (АОГ), прежде всего — байесовских сетей. Приведены характеристика выразительных и познавательных возможностей АОГ-моделей, их способности отображать причинно-следственные связи. В сопоставлении с другими подходами к выводу знаний и идентификации моделей показаны роль и место байесовских сетей как инструмента анализа и обобщения эмпирических данных, связь с логикой и проблемой индукции.
A promising class of models, namely, probabilistic models of dependences based on acyclic directed graphs (ADG), primarily of the Bayesian networks, is reviewed. The expressive and cognitive properties of the ADG models, their ability to convey a causal relationship are described. The role and place of the Bayesian networks as a tool for analysis and deneralization of empirical data, their relation to logic and induction problem are shown in comparison with other approaches to cognition and model identification.
Надається введення та стислий огляд перспективного класу моделей — ймовірнісних моделей залежностей на основі ациклічних орієнтованих графів (АОГ), передусім — байєсівських мереж. Наведено експресивні та когнітивні можливості АОГ-моделей, їх здатність відображати причинно-наслідкові зв’язки. У співставленні з іншими підходами до виведення знань та ідентифікації моделей показано роль і місце байєсівських мереж як інструменту аналізу та узагальнення емпіричних даних, зв’язок з логікою та проблемою індукції.