Представлена концепция Ф-функций и квази Ф-функций как эффективных средств для моделирования трехмерных задач упаковки выпуклых объектов, допускающих непрерывные повороты и трансляции. Формулируется математическая модель задачи плотной упаковки выпуклых объектов и рассматриваются ее основные свойства. Рассмотрен метод решения, который включает следующие этапы: построение начальных точек, вычисление локальных экстремумов и переход из одного локального минимума к другому. Предложенный подход к решению задачи является эффективным для решения оптимизационных задач упаковки. Приведены численные экперименты.
Наведено концепцію Ф-функцій і квазі Ф-функцій як еффективного засобу для моделювання тривимірних задач пакування опуклих об’єктів, що допускають неперевні повороти і трансляції. Сформульовано математичну модель задачі щільного пакування опуклих об’єктів і розглянуто її основні властивості. Запропоновано метод розв’язання, який включає наступні етапи: побудову початкових точок, обчислення локальних екстремумів і перехід з одного локального мінімуму до іншого. Обчислювальні експерименти показали, що запропонований підхід є ефективним для розв’язання оптимізаційних задач пакування. Наведено чисельні експерименти.
The paper represents the concept of Ф-functions and quasi Ф-functions as an efficient tool for mathematical modeling of three-dimensional packing problems for convex geometrical objects with continuous translations and rotations. A mathematical model of packing convex geometrical objects is formulated and its basic properties are considered. A method is proposed to solve it, which includes the following stages: construction of starting points, computation of local extrema, and a jump from one local minimum to another. The computating experiments have shown that the solution approach is efficient to solve optimization packing problems. Numerical examples are given.