Установлено, что текстурированные керамические материалы YBa₂Cu₃O₇₋ð при насыщении кислородом в условиях повышенного (до 10–16 МПа) давления и высоких (700–900 °C) температур за относительно короткое (72 ч) время достигают рекордного уровня сверхпроводящих (при 77 К в плоскости ab Y123 jc ≈ 100 кА/см² (0 Тл), 55 кА/см² (2 Тл) и Hirr 9,5 Тл) и механических (микротвердости до HV = 7,6 ГПа и трещиностойкости до K1c= 4,4 МПа·м0,5 при нагрузке 4,9 Н) свойств. Это объясняется формированием наноструктуры из двойников, служащих центрами пиннинга вихрей несверхпроводящей фазы (плотность двойникования ≈ 20–35 мкм⁻¹), а также образованием значительно меньшего количества микротрещин (< 0,2 мкм⁻¹) и предотвращением формирования макротрещин.
Показано, що текстуровані керамічні матеріали YBa₂Cu₃O₇₋ð при насиченні киснем в умовах підвищеного (до 10–16 МПа) тиску і високих (700–900 °C) температур за відносно короткий (72 год) час досягають рекордного рівня надпровідних (при 77 К в площині ab Y123 jc ≅ 100 кА/см² (0 Тл), 55 кА/см² (2 Тл) і Hirr 9,5 Тл) і механічних (мікротвердості до HV = 7,6 ГПа та тріщиностійкості до KIc= 4,4 МПа⋅ м0,5 при навантаженні 4,9 Н) властивостей. Це пояснюється формуванням наноструктури з двійників, що служать центрами піннингу вихрів ненадпровідної фази (щільність двійникування ~ 20–35 мкм⁻¹), а також утворенням значно меншої (< 0,2 мкм⁻¹) кількості мікротріщин і запобіганням формування макротріщин.
It has been established that the oxygenation of the structure of YBa₂Cu₃O₇₋ð (Y123) textured ceramic materials under elevated pressure (up to 10–16 MPa) and high temperatures (700–900 °C) for a relatively short time (72 h) makes it possible to attain the record superconducting (at 77 K in the ab plane of Y123 phase jc ≈ 100 kA/cm² (0 T), 55 kA/cm² (2 T) and Hirr 9.5 T) and mechanical (microhardness up to HV = 7.6 GPa and fracture toughness up to KIc = 4.4 MPa⋅m0.5 under 4.9 N) properties. The high material characteristics have been explained by the formation of a nanostructure from twins acting as pinning centers (the density of twinning being 20–35 m⁻¹) and a considerably smaller amount of microcracks (<0.2 m⁻¹) as well as by prevention of macrocracking.