Показати простий запис статті
| dc.contributor.author | 
Atiyah, M. | 
 | 
| dc.contributor.author | 
Segal, G. | 
 | 
| dc.date.accessioned | 
2017-09-30T11:09:53Z | 
 | 
| dc.date.available | 
2017-09-30T11:09:53Z | 
 | 
| dc.date.issued | 
2004 | 
 | 
| dc.identifier.citation | 
Twisted K-theory / M. Atiyah, G. Segal // Український математичний вісник. — 2004. — Т. 1, № 3. — С. 287-330. — Бібліогр.: 29 назв. — англ. | 
uk_UA | 
| dc.identifier.issn | 
1810-3200 | 
 | 
| dc.identifier.other | 
2000 MSC. 55-xx, 55N15, 55N91, 19Kxx. | 
 | 
| dc.identifier.uri | 
http://dspace.nbuv.gov.ua/handle/123456789/124621 | 
 | 
| dc.description.abstract | 
Twisted complex K-theory can be defined for a space X equipped with a bundle of complex projective spaces, or, equivalently, with a bundle of C*-algebras. Up to equivalence, the twisting corresponds to an element of H³(X; Z). We give a systematic account of the definition and basic properties of the twisted theory, emphasizing some points where it behaves differently from ordinary K-theory. (We omit, however, its relations to classical cohomology, which we shall treat in a sequel.) We develop an equivariant version of the theory for the action of a compact Lie group, proving that then the twistings are classified by the equivariant cohomology group H³G (X; Z). We also consider some basic examples of twisted K-theory classes, related to those appearing in the recent work of Freed-Hopkins-Teleman. | 
uk_UA | 
| dc.language.iso | 
en | 
uk_UA | 
| dc.publisher | 
Інститут прикладної математики і механіки НАН України | 
uk_UA | 
| dc.relation.ispartof | 
Український математичний вісник | 
 | 
| dc.title | 
Twisted K-theory | 
uk_UA | 
| dc.type | 
Article | 
uk_UA | 
| dc.status | 
published earlier | 
uk_UA | 
             
        
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті