Розроблено і досліджено гібридний алгоритм методу Рунге-Кутта 4-го порядку розв’язування задач з початковими умовами для систем звичайних диференціальних рівнянь (СЗДР). Розглянуто питання програмної реалізації алгоритму на комп’ютерах з графічними процесорами. Наведені результати апробації алгоритму на багатоядерному комп’ютері з графічними прискорювачами Інпарком, коефіцієнти прискорення та ефективності використання запропонованого алгоритму.
Разработан и исследован гибридный алгоритм метода Рунге-Кутта 4-го порядка для решения задач с начальными условиями для систем обыкновенных дифференциальных уравнений (СОДУ). Рассмотрены вопросы программной реализации алгоритма на компьютерах с графическими процессорами. Приведены результаты апробации алгоритма на многоядерном компьютере с графическими ускорителями Инпарком, коэффициенты ускорения и эффективности использования предложенного алгоритма.
A hybrid algorithm of the Runge-Kutta 4-th order method intended for the solving of initial-value problems in systems of ordinary differential equations (SODE) has been developed and investigated. The paper deals with problems related to program implementation of algorithm on multi-core computers with graphic accelerators. The results gained during program implementation and testing of algorithm on multi-core computer with graphic accelerators Inparcom are presented; acceleration and efficiency coefficients for the proposed algorithm are determined as well.