Показати простий запис статті
dc.contributor.author |
Попов, Г.Я. |
|
dc.contributor.author |
Фесенко, А.А. |
|
dc.date.accessioned |
2010-08-10T09:08:04Z |
|
dc.date.available |
2010-08-10T09:08:04Z |
|
dc.date.issued |
2010 |
|
dc.identifier.citation |
Об одном новом методе решения пространственной задачи для упругого слоя / Г.Я. Попов, А.А. Фесенко // Проблемы машинострения. — 2010. — Т. 13, № 2. — С. 24-30. — Бібліогр.: 6 назв. — рос. |
uk_UA |
dc.identifier.issn |
0131-2928 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/10935 |
|
dc.description.abstract |
Строится точное решение смешанной задачи теории упругости для пространственного слоя с учетом наличия внутри слоя произвольно ориентированной сосредоточенной силы, когда на одной грани заданы напряжения, а другая закреплена. В отличие от традиционных подходов к такой задаче, основанных на использовании методов Папковича–Нейбера и Трефтца, сводящих уравнения Ламе к последовательности гармонических с неразделенными граничными условиями, что существенно усложняет технику построения решения. Здесь используется новый подход, основанный на приведении уравнений Ламе к одному независимо решаемому и двум совместно решаемым уравнениям. При этом граничные условия тоже разделяются. Методом интегральных преобразований указанные два уравнения приводятся к одномерной векторной краевой задаче. |
uk_UA |
dc.description.abstract |
Будується точний розв’язок змішаної задачі теорії пружності для просторового шару з урахуванням наявності усередині шару довільно орієнтовної зосередженої сили, коли на одній грані задаються напруження, а інша закріплена. На відміну від традиційних підходів до розв’язання такої задачі, які базуються на використанні методів Папковича–Нейбера і Трефтца, що зводять рівняння Ламе до послідовності гармонійних з нерозділеними граничними умовами, що суттєво ускладнює техніку побудови розв’язку. Тут використовується новий метод, який базується на зведенні рівнянь Ламе до одного, що незалежно розв’язується, і двох сумісно розв’язуваних. При цьому граничні умови також розділяються. Методом інтегральних перетворень вказані два рівняння зводяться до одновимірної векторної крайової задачі. |
uk_UA |
dc.language.iso |
ru |
uk_UA |
dc.publisher |
Інстиут проблем машинобудування ім. А.М. Підгорного НАН України |
uk_UA |
dc.subject |
Динамика и прочность машин |
uk_UA |
dc.title |
Об одном новом методе решения пространственной задачи для упругого слоя |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
dc.identifier.udc |
539.3 |
|
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті