Показати простий запис статті
dc.contributor.author |
Bosenko, T. |
|
dc.contributor.author |
Kadets, V. |
|
dc.date.accessioned |
2016-10-01T15:04:24Z |
|
dc.date.available |
2016-10-01T15:04:24Z |
|
dc.date.issued |
2010 |
|
dc.identifier.citation |
Daugavet Centers / T. Bosenko, V. Kadets // Журнал математической физики, анализа, геометрии. — 2010. — Т. 6, № 1. — С. 3-20. — Бібліогр.: 14 назв. — англ. |
uk_UA |
dc.identifier.issn |
1812-9471 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/106629 |
|
dc.description.abstract |
An operator G: X → Y is said to be a Daugavet center if ||G + T|| = ||G|| + ||T|| for every rank-1 operator T: X → Y . The main result of the paper is: if G: X →! Y is a Daugavet center, Y is a subspace of a Banach space E, and J : Y → E is the natural embedding operator, then E can be equivalently renormed in such a way that J ○ G : X → E is also a Daugavet center. This result was previously known for the particular case X = Y, G = Id and only in separable spaces. The proof of our generalization is based on an idea completely di®erent from the original one. We also give some geometric characterizations of the Daugavet centers, present a number of examples, and generalize (mostly in straightforward manner) to Daugavet centers some results known previously for spaces with the Daugavet property. |
uk_UA |
dc.description.sponsorship |
Research of the second named author was conducted during his stay in the University of Granada and was supported by Junta de Andalucia grant P06-FQM-01438. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
uk_UA |
dc.relation.ispartof |
Журнал математической физики, анализа, геометрии |
|
dc.title |
Daugavet Centers |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті