Показати простий запис статті
dc.contributor.author |
Yampolsky, A. |
|
dc.date.accessioned |
2016-09-28T19:09:06Z |
|
dc.date.available |
2016-09-28T19:09:06Z |
|
dc.date.issued |
2007 |
|
dc.identifier.citation |
Invariant Totally Geodesic Unit Vector Fields on Three-Dimensional Lie Groups / A. Yampolsky // Журнал математической физики, анализа, геометрии. — 2007. — Т. 3, № 2. — С. 253-276. — Бібліогр.: 9 назв. — англ. |
uk_UA |
dc.identifier.issn |
1812-9471 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/106449 |
|
dc.description.abstract |
We give a complete list of left-invariant unit vector fields on three-dimensional Lie groups equipped with a left-invariant metric that generate a totally geodesic submanifold in the unit tangent bundle of a group equipped with the Sasaki metric. As a result we obtain that each three-dimensional Lie group admits totally geodesic unit vector eld under some conditions on structural constants. From a geometrical viewpoint, the field is either parallel or a characteristic vector field of a natural almost contact structure on the group. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
uk_UA |
dc.relation.ispartof |
Журнал математической физики, анализа, геометрии |
|
dc.title |
Invariant Totally Geodesic Unit Vector Fields on Three-Dimensional Lie Groups |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті