We obtain an existence principle for the impulsive periodic boundary-value problem u’’ + cu’ = g(x) + e(t), u(ti+) = u(ti) + Ji(u, u’ ), u’(ti+) = u’(ti) + Mi(u, u’), i = 1, . . ., m, u(0) = u(T), u’(0) = u’(T), where g ∈ C(0,∞) can have a strong singularity at the origin. Furthermore, we assume that 0 < t1 < . . . < tm < T, e ∈ L₁ [0, T], c ∈ R and Ji , Mi , i = 1, 2, . . . , m, are continuous mappings of G[0, T] × G[0, T] into R, where G[0, T] denotes the space of functions regulated on [0, T]. The presented principle is based on an averaging procedure similar to that introduced by Manasevich ´ and Mawhin for singular periodic problems with p-Laplacian.
Отримано принцип iснування розв’язку перiодичної граничної задачi з iмпульсною дiєю, u’’ + c u’ = g(x) + e(t), u(ti+) = u(ti) + Ji(u, u’), u’(ti+) = u’(ti) + Mi(u, u’), i = 1, . . ., m, u(0) = u(T), u’(0) = u”(T), де g ∈ C(0,∞) може мати сильну особливiсть у нулi. Далi, припускається, що 0 < t1 < . . . < tm < T, e ∈ L₁ [0, T], c ∈ R i Ji , Mi , i = 1, 2, . . . , m, — неперервнi вiдображення з G[0, T] × G[0, T] в R, де G[0, T] — простiр функцiй, регульованих на [0, T]. Отримання принципу базується на процедурi усереднення, яка є аналогом процедури, запро- понованої Менасевiчем та Мавхiним, для сингулярних перiодичних задач iз p-лапласiаном.