Розглянуто спектральнi задачi для оператора Шрьодiнгера з полiномiальними потенцiалами у
Rⁿ, n ≥2, i за допомогою функцiонально-дискретного (FD-) методу та системи комп’ютерної алгебри Maple знайдено ряд точних найменших власних значень для потенцiалiв конкретного вигляду. У випадку, коли традицiйний FD-метод є розбiжним (степiнь полiномiального потенцiалу хоча б по однiй iз незалежних змiнних перевищує 2), запропоновано його модифiкацiю, яка виявилася досить ефективною для розглядуваного класу задач. Отриманi теоретичнi результати проiлюстровано на чисельних прикладах.
We consider spectral problems for a Schrodinger operator with polynomial potentials on Rⁿ, n ≥ 2. By
using a functional-discrete (FD-) method and the computer algebra system Maple, we find exact values
of a number of smallest eigenvalues for potentials of a particular form. In the case where the traditional
FD-method is divergent (the degree of the polynomial potential exceeds 2 in any variable) we propose a
modification of the method, which is rather effective for the class of problems under consideration. The
obtained theoretical results are illustrated with numerical examples.