Доведено, що обмежена 1-періодична функція від розв'язку однорідного за часом дифузійного рівняння з 1-періодичними коефіцієнтами утворює процес, що задовольняє умову рівномірного сильного перемішування. Встановлено оцінку швидкості зближення за ймовірністю в метриці простору C[0,T] деякого нормованого інтегрального функціонала від розв'язку звичайного однорідного за часом стохастичного диференціального рівняння з 1-періодичними коефіцієнтами з сім'єю віперових процесів. Як приклад, розглянуто звичайне диференціальне рівняння, збурене швидкоосцилюючим центрованим процесом, який є 1-періодичною функцією від розв'язку однорідного за часом стохастичного диференціального рівняння з 1-періодичними коефіцієнтами. Встановлено оцінку швидкості зближення розв'язку такого рівняння з розв'язком відповідного стохастичного рівняння Іто.
We prove that a bounded 1-periodic function of a solution of a time-homogeneous diffusion equation with 1-periodic coefficients forms a process that satisfies the condition of uniform strong mixing. We obtain an estimate for the rate of approach of a certain normalized integral functional of a solution of an ordinary time-homogeneous stochastic differential equation with 1-periodic coefficients to a family of Wiener processes in probability in the metric of space C [0, T]. As an example, we consider an ordinary differential equation perturbed by a rapidly oscillating centered process that is a 1-periodic function of a solution of a time-homogeneous stochastic differential equation with 1-periodic coefficients. We obtain an estimate for the rate of approach of a solution of this equation to a solution of the corresponding Itô stochastic equation.