Изучены возможности выплавки сплава Ti–1,5Al–6,8Mo–4,5Fe с последующей горячей деформационной обработкой способами прессования и прокатки. Исследованы микроструктура и уровень механических свойств полученных образцов титанового сплава Ti–1,5Al–6,8Mo–4,5Fe диаметром 110 мм. Анализ результатов химического состава металла слитка показал, что распределение легирующих элементов по длине равномерное и соответствует заданному составу. Проведенная пластическая деформация полученного сплава Ti–1,5Al–6,8Mo–4,5Fe позволила сформировать в материале дисперсную однородную внутризеренную (α + β)-микроструктуру. Показано, что полученный способами электронно-лучевой плавки и горячей прокатки сплав Ti–1,5Al–6,8Mo–4,5Fe после отжига как при температурах двухфазной (α + β)-области, так и однофазной ?-области характеризуется высоким комплексом механических свойств, когда прочность на уровне выше 1100 МПа сочетается с достаточными пластическими характеристиками, свойственными более легированным и дорогим титановым сплавам.
Вивчені можливості виплавки сплаву Ti–1,5Al–6,8Mo–4,5Fe з подальшою гарячою деформаційною обробкою способами пресування і прокатки. Досліджені мікроструктура і рівень механічних властивостей одержаних зразків титанового сплаву Ti–1,5Al–6,8Mo–4,5Fe діаметром 110 мм. Аналіз результатів хімічного складу металу зливка показав, що розподіл легуючих елементів по довжині рівномірний і відповідає заданому складу. Проведена пластична деформація отриманого сплаву Ti–1,5Al–6,8Mo–4,5Fe дозволила сформувати в матеріалі дисперсну однорідну внутрізеренну (α + β)-мікроструктуру. Показано, що отриманий способами електронно-променевої плавки та гарячої прокатки сплав Ti–1,5Al–6,8Mo–4,5Fe після відпалу як при температурах двохфазної (α + β)-області, так і однофазної β-області, характеризується високим комплексом механічних властивостей, коли міцність на рівні вище 1100 МПа поєднується з достатніми пластичними характеристиками, властивими більш легованим і дорогим титановим сплавам.
The possibilities of melting Ti–1.5Al–6.8Mo–4.5Fe alloy with subsequent hot deformational treatment by methods of pressing and rolling were studied. The microstructure and the level of mechanical properties of the obtained Ti–1.5Al–6.8Mo–4.5Fe titanium alloy samples of 110 mm diameter were studied. Analysis of results of the chemical composition of ingot metal showed that the distribution of alloying elements in length is uniform and corresponds to the specified composition. The plastic deformation of the produced Ti–1.5Al–6.8Mo–4.5Fe alloy made it possible to form a dispersed homogeneous intragranular α + β-microstructure in the material. It was shown that the alloy Ti–1.5Al–6.8Mo–4.5Fe, produced by electron beam melting and hot rolling methods, after annealing both at temperatures of two-phase α + β region and single-phase ?-region is characterized by a high complex of mechanical properties, when the strength at the level above 1100 MPa is combined with sufficient plastic characteristics inherent in more alloyed and expensive titanium alloys.