Any continuous interval map of type greater than 2∞ is shown to have what we call a full cascade of simple periodic orbits. This is used to prove that, for maps of any types, the existence of such a full cascade is equivalent to the existence of an infinite ω-limit set. For maps of type 2∞, this is equivalent to the existence of a (period doubling) solenoid. Hence, any map of type 2∞ which is either piecewise monotone (with finite number of pieces) or continuously differentiable has both a full cascade of simple periodic orbits and a solenoid.
Показано, що кожне неперервне відображення відрізка прямої, тип якого більший ніж 2∞, має повний каскад періодичних орбіт. Це використовує ться для того, щоб показати, що для відображень довільного типу існування таких повних каскадів еквівалентне існуванню нескінченних 2∞-граничних множин. Для відображень типу 2∞ де еквівалентно існуванню (двоперіодичного) соленоїда. Таким чином, довільне відображення типу 2∞, яке є або кусково-монотонним, або неперервно диференційовним, має повний каскад простих орбіт та соленоїд.