Рассматривается система дифференциальных уравнений с асимптотически устойчивой диагональной частью и нелинейностью, представляющей сумму нелинейных функций одного аргумента, удовлетворяющих условиям Липшица. Система имеет положение равновесия в первом квадранте. Исследование устойчивости положения равновесия проводится с использованием метода функций Ляпунова. Функция Ляпунова строится в виде суммы квадратов фазовых переменных. Получены конструктивные условия устойчивости. Рассматриваются системы с запаздыванием. Получены достаточные условия устойчивости, зависящие от величины запаздывания.
Розглядається система диференцiальних рiвнянь з асимптотично стiйкою дiагональною частиною та нелiнiйнiстю, що являє собою суму нелiнiйних функцiй одного аргументу, якi задовольняють умовам Лiпшиця. Система має стан рiвноваги в першому квадрантi. Дослiдження стiйкостi стану рiвноваги проводиться з використанням методу функцiй Ляпунова. Функцiя Ляпунова будується у виглядi суми квадратiв фазових змiнних. Отриманi конструктивнi умови стiйкостi. Розглядаються системи iз запiзненням. Отриманi достатнi умови стiйкостi, що залежать вiд величини запiзнення.
We consider system of differential equations with asymptotically stable diagonal part and the nonlinearity, representing the sum of non-linear functions one of the variable, which satisfying Lipschitz conditions. The system has a position of equilibrium in the first quadrant. Studying of the stability of the equilibrium position is conducted with using the method of Lyapunov functions. The Lyapunov function is building as sum of the squares of the phase variables. We get constructive conditions of stability. We considering systems with delay. We obtain sufficient conditions of stability, which depends on the magnitude of the delay.