Доказано существование неклассических решений задачи Неймана и задачи о косой производной для обобщений уравнения Лапласа в анизотропных неоднородных средах в почти гладких жордановых областях с произвольными граничными данными измеримыми относительно логарифмической ёмкости. Показано, что пространства таких решений всегда имеют бесконечную размерность.
Доведено iснування некласичних розв язкiв задачi Неймана та задачi про похилу похiдну для узагальнень рiвняння Лапласа в анiзотропних неоднорiдних середовинах в майже гладких жорданових областях iз довiльними граничиними даними, що є вимiрюваними вiдносно логарифмiчної ємностi. Показано що простори таких розв язкiв завжди мають нескiнчену розмiрнiсть.
It is proved the existence of nonclassical solutions of the Neumann and Poincare problems for generalizations of the Laplace equation in anisotropic and nonhomogeneous media in almost smooth domains with arbitrary boundary data that are measureable with respect to logarithmic capacity. Moreover, it is shown that the spaces of these solutions have the infinite dimension.