Рассмотрен алгоритм декодирования для кода, основанного на обработке информационных сообщений конечными автоматами и использовании двухбазисной системы исчисления, а также оценена его эффективность. Кроме того, описан общий алгоритм кодирования. Как кодирование, так и декодирование осуществляется с помощью двухуровневой системы: на внутреннем уровне входное сообщение представлено в виде нижнего (2,3)-кода, а на внешнем помехоустойчивые свойства этого кода усиливаются путем его преобразования конечным автоматом специального вида. При декодировании ошибки улавливаются, прежде всего, на внешнем уровне, однако если этого не происходит, результат «подчищается» на внутреннем уровне. Исследована взаимосвязь внешнего уровня рассматриваемой системы со сверточными кодами и показаны преимущества предложенного метода..
Розглянуто алгоритм декодування для коду, що базується на обробленні інформаційних повідомлень скінченними автоматами та використанні двобазисної системи числення, а також оцінено його ефективність. Крім того, розглянуто загальний алгоритм кодування. Як кодування, так і декодування здійснюється за допомогою дворівневої системи: на внутрішньому рівні вхідне повідомлення подається у вигляді нижнього (2,3)-коду, а на зовнішньому завадостійкі властивості цього коду підсилюються через його перетворення скінченним автоматом спеціального вигляду. Під час декодування помилки перехоплюються насамперед на зовнішньому рівні, але якщо цього не відбувається, результат «підчищається» на внутрішньому рівні. Досліджено взаємозв’язок зовнішнього рівня розглянутої системи зі згортковими кодами і показано переваги запропонованого методу.
The decoding algorithm for the special error-correcting code is discussed and its efficiency is estimated. The code is based on information processing by finite automata and using two-base numeral system. The general encoding algorithm is also considered. Either encoding or decoding is performed by a two-level system: the input message is represented as the lower (2,3)-code on the internal level and the error correcting capabilities of this code are strengthened on the external level by its conversion using a special finite automaton. First and foremost errors are corrected on the external level; otherwise, they are erased by the internal automaton. The relation between the external level of the discussed system and convolutional codes is considered and the advantages of the proposed method are shown.