The effect of particle rolling and crushing on the
evolutions of the two types of anisotropy, i.e.,
anisotropy of particle packing (microstructure)
and anisotropy of force chains, is investigated
numerically using the discrete element method.
To this end, the classical fabric tensor is adopted
to describe the anisotropy of microstructure,
while two similar orientation tensors defined by
the directions of contact forces are used to characterize
the anisotropy of force chains. Numerical
results show that the evolutions of
anisotropy follows the same tendency as the
stress–strain curve, and the anisotropy of force
chains is more intense than that of the
microstructure. In addition, particle rolling exerts
different effect on anisotropy before and after
the peak stress state, and particle crushing
decreases the anisotropy of granular materials.
Представлено чисельне дослідження за допомогою методу дискретних елементів
впливу скочування і дроблення частинок на еволюцію анізотропій скочування частинок (мікроструктура) і силового ланцюжка. Для опису анізотропії мікроструктури
використовується структурний класичний тензор, а два аналогічних тензора орієнтації, що характеризуються напрямком контактних зусиль, – для визначення анізотропії силового ланцюжка. Результати чисельного дослідження показали, що еволюція анізотропій має той же характер, що і залежність деформації від напруження,
однак анізотропія силового ланцюжка є більш інтенсивною порівняно з анізотропією
мікроструктури. Більш того, скочування частинок по-різному впливає на анізотропію
до і після досягнення максимального значення напруження, в той час як дроблення
частинок зменшує анізотропію гранульованих матеріалів.
Представлено численное исследование с помощью метода дискретных элементов влияния
скатывания и дробления частиц на эволюцию анизотропий скатывания частиц (микроструктура) и силовой цепочки. Для описания анизотропии микроструктуры используется структурный классический тензор, а два аналогичных тензора ориентации, характеризующихся
направлением контактных усилий, – для определения анизотропии силовой цепочки. Результаты численного исследования показали, что эволюция анизотропий имеет тот же характер, что и зависимость деформации от напряжения, однако анизотропия силовой цепочки
является более интенсивной по сравнению с анизотропией микроструктуры. Более того,
скатывание частиц по-разному влияет на анизотропию до и после достижения максимального значения напряжения, тогда как дробление частиц уменьшает анизотропию гранулированных материалов.