В поисках надежных корреляций выполнен комплекс теоретических и экспериментальных исследований длительной прочности твердых растворов на основе металлических кристаллов с различной физической кинетикой дефектов. Для повышения сопротивления микротекучести, исключающей разрушение, обоснованы наиболее вероятные контролирующие механизмы торможения дислокаций, в том числе дислокационными атмосферами Коттрелла с энергией активации, равной энергии образования избыточных вакансий при высоких напряжениях и низких температурах (V*τ*> kT), а также активацией восхождения дислокаций при высоких температурах и низких напряжениях (V*τ*<< kT). Численный анализ уравнения дислокационной релаксации для этих двух дислокационных механизмов позволяет на межатомных расстояниях разделить энергетические вклады близкодействующего (силового, контактного) взаимодействия дислокаций с растворенными атомами и термической активации. Модифицирован физический критерий полезной длительной прочности, который может быть использован для количественной оценки эффективности легирования металлических кристаллов и повышения их жаропрочности.
У пошуках надійних кореляцій виконано комплекс теоретичних та експериментальних досліджень тривалої міцності твердих розчинів на основі металевих кристалів з різною фізичною кінетикою дефектів. Для підвищення опору плинності, що виключає руйнування, обгрунтовані найбільш ймовірні контролюючі механізми гальмування дислокацій, у тому числі дислокаційними атмосферами Коттрелла з енергією активації, яка рівна енергії утворення надлишкових вакансій при високих напруженнях і низьких температурах (V*τ*> kT), а також активацією переповзання дислокацій при високих температурах і низьких напругах (V*τ*<< kT). Чисельний аналіз рівняння дислокаційної релаксації для цих двох дислокаційних механізмів дозволяє на міжатомних відстанях розділити енергетичні вклади близькодіючої (силової, контактної) взаємодії дислокацій з розчиненими атомами і термічної активації. Модифіковано фізичний критерій корисної тривалої міцності, який може бути використаний для кількісної оцінки ефективності легування металевих кристалів і підвищення їх жароміцності.
In recent years much progress has been first made in the author’s development of a physical theory for the useful nondestructive long-term strength based upon dislocation model for the microyield and creep strain resistance of solid solutions with various kinetics of the stress-induced solute-dislocation interactions. In this study, the resulting equations for the grown-in dislocation-solute relaxation were used for numerical analysis to share the time – dependent contributions of mechanical and thermal components of activation energy. It have been argued in favour of at least two dominating dislocation mechanisms, which are believed to cause the solute atmosphere-dislocation dragging at high stresses and low temperatures (V*τ*> kT) as well as dislocation climb impeding at low stresses and high temperatures (V*τ*<< kT) to increase the microyield/creep resistance. In summary, physical (energetic) criterion of time-dependent strength is modified to provide the quantitative assessment of an alloy-efficiency for metal crystals to improve their heat-resistance and long-term strength by regulating of dislocation mobility decrement / increment.