Получено аналитическое решение уравнения Компанейца в плоско-стратифицированной среде с плотностью, изменяющейся по закону гиперболического тангенса, моделирующему границу молекулярного облака с межзвездной средой (промежуточная область ударного фронта). Полученное решение позволяет построить полное решение, восстановить весь ударный фронт и исследовать его эволюцию в реальном времени при произвольных значениях трех свободных параметров: перепада плотности, масштаба неоднородности и положения точки взрыва.
Отримано аналітичний розв’язок рівняння Компанійця у плоско-стратифікованому середовищі з густиною, яка змінюється за законом гіперболічного тангенса, що моделює границю між молекулярною хмарою та міжзорянім середовищем (проміжна область ударного фронту). Отриманий розв’язок дозволяє побудувати повний розв’язок, відновити весь ударний фронт та дослідити його еволюцію в реальному часі за довільних значень трьох незалежних параметрів: перепаду густини, масштабу неоднорідності та положення точки вибуху.
The analytical solution of Kompaneets equation, describing the evolution of the shock front in a planestratified medium for density distribution in a form of the hyperbolic tangent modeling the boundary molecular cloud – interstellar medium was obtained (intermediate region of the shock front). Obtained solution allows to build the complete solution, restore the whole shock front and investigate its evolution in real time for arbitrary values of parameters: density changes, scale of inhomogeneity and position of the explosion point.