Krasikova, I.V.; Popov, M.M.
(Журнал математической физики, анализа, геометрии, 2013)
A known analogue of the Pitt compactness theorem for function spaces asserts that if 1 ≤ p < 2 and p < r < ∞, then every operator T : Lp → Lr is narrow. Using a technique developed by M.I. Kadets and A. Pełczyński, we prove ...