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A model for diffusion and phase separation, which takes into account hy-
perbolic relaxation of the solute diffusion flux, is developed. Such a ‘hy-
perbolic model’ provides analysis of ‘hyperbolic evolution’ of patterns in 

spinodal decomposition in systems supercooled below critical temperature. 

Analytical results for the hyperbolic model of spinodal decomposition are 

summarized in comparison with outcomes of classic Cahn−Hilliard theory. 

Numeric modelling shows that the hyperbolic evolution leads to sharper 

boundary between two structures of a decomposed system in comparison 

with prediction of parabolic equation given by the theory of Cahn and Hil-
liard. Considering phase separation processes in stochastic systems with a 

field-dependent mobility and an internal multiplicative noise, we study dy-
namics of spinodal decomposition for parabolic and hyperbolic models sepa-
rately. It is that the domain growth law is generalized when internal fluc-
tuations are introduced into the model. A mean field approach is carried out 

in order to obtain the stationary probability, bifurcation and phase dia-
grams displaying re-entrant phase transitions. We relate our approach to 

entropy-driven phase-transitions theory. 

Розвинуто модель дифузії та фазового розшарування, який враховує гі-
перболічну релаксацію дифузійного потоку. Такий «гіперболічний мо-
дель» призводить до «гіперболічного» рівнання щодо формування моду-
льованих структур при спинодальнім розпаді в системах, охолоджених 

нижче критичної температури. Аналітичні результати для гіперболічно-
го моделю спинодального розпаду порівнюються із відповідними резуль-
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татами, що випливають з класичної теорії Кана—Хіллярда. За допомогою 

чисельного моделювання показано, що еволюція системи в гіперболічнім 

моделю призводить до різкої міжфазної межі у порівнянні з обчислення-
ми за параболічним модельом Кана−Хіллярда. З розглядом процесів фа-
зового розшарування в стохастичних системах із залежною від поля кон-
центрації рухливістю та внутрішнім мультиплікативним шумом вивча-
ється динаміка спинодального розпаду для параболічного та гіперболіч-
ного моделів. Показано, що закон зростання розмірів зерен може бути 

узагальнений введенням у розгляд внутрішніх флюктуацій, залежних 

від поля концентрації. Для дослідження стаціонарної картини (функції 
розподілу, біфуркаційних та фазових діяграм) розвинуто теорію серед-
нього поля, в рамках якої встановлено, що відповідні перетворення но-
сять реверсивний характер. Показано, що опис процесу фазового розша-
рування у стохастичних системах із внутрішнім шумом забезпечується 

використанням теорії ентропійнокерованих фазових переходів. 

В работе развита модель для описания диффузии и фазового расслоения, 

которая учитывает гиперболическую релаксацию диффузионного пото-
ка. Такая «гиперболическая модель» приводит к гиперболическому 

уравнению описания формирования модулированных структур при спи-
нодальном распаде в системах, охлажденных ниже критической темпе-
ратуры. Аналитические результаты для гиперболической модели спино-
дального распада сравниваются с соответствующими результатами, сле-
дующими из классической теории Кана—Хилларда. С помощью числен-
ного моделирования показано, что эволюция системы в гиперболической 

модели приводит к резким межфазным границам в сравнении с вычисле-
ниями согласно параболической модели Кана—Хилларда. При рассмот-
рении процессов фазового расслоения в стохастических системах с зави-
симой от поля концентрации подвижностью и внутренним мультиплика-
тивным шумом изучена динамика спинодального распада для параболи-
ческой и гиперболической моделей. Показано, что закон роста размеров 

зерен может быть обобщен введением в рассмотрение внутренних флук-
туаций, зависимых от поля концентрации. Для исследования стацио-
нарной картины (функции распределения, бифуркационных и фазовых 

диаграмм) развита теория среднего поля, в рамках которой установлено, 

что соответствующие превращения носят реверсивный характер. Пока-
зано, что описание процесса фазового расслоения в стохастических сис-
темах с внутренним шумом обеспечивается использованием теории эн-
тропийноуправляемых фазовых переходов. 
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1. INTRODUCTION 

Consider a process of phase separation evolving through spontaneous 

growth of fluctuations, e.g., through fluctuations of concentration as 

in liquid−liquid systems or fluctuations of density as in gas—liquid sys-
tems. This process is known as a spinodal decomposition, in which, be-
cause of spontaneous fluctuations growth, both phases have equivalent 

symmetry but they differ only in composition. It was observed in many 

experiments on polymeric mixtures [1], liquid solutions [2, 3], organic 

systems [4], and metallic systems [5, 6]. This transformation has been 

widely investigated by using theoretical methods as well [7—10]. Phe-
nomenological theory for decomposing phases has been constructed by 

Ginzburg and Landau [11]. They described magnetic domains in tran-
sition from the normal to superconducting phase using non-conserved 

order parameter. This theory has been successfully advanced by Cahn 

and Hilliard for using conserved order parameter for description of 
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spinodal decomposition in binary liquids and solids [12]. As it has been 

further derived by Cahn [13, 14], kinetics of decomposition is defined 

by the growth of unstable fluctuations, and the mean size of a new 

phase can be given by the most rapidly growing fluctuation.  
 In parallel with detailed analysis [10, 15] and tests against experi-
mental data [3, 4], the theory of Cahn and Hilliard has been further ex-
plored and developed. In particular, it has been demonstrated in com-
putational modelling [16] that the rapidly quenched liquid mixtures 

under decomposition exhibit unusual non-equilibrium patterns, which 

do not consistent with predictions of the Cahn and Hilliard’s theory. 

These inconsistencies might be associated with the phase segregation 

kinetics induced by hydrodynamic interactions following a rapid 

quench below spinodal [16]. They also might be attributed to the spi-
nodal decomposition upon inhomogeneous quenching [17]. In both 

cases, there is a boundary for the critical quenching above which the 

classic Cahn and Hilliard’s approach has to be extended to the case of 

strongly nonequilibrium decomposition provided by deep supercooling 

into the spinodal region of a phase diagram. Therefore, earliest stages 

and periods of decomposition under large supercooling can provide 

pattern’s dynamics different from those predicted by the Cahn and 

Hilliard’s theory. 
 A few advancements were made for strongly non-equilibrium phase 

separation. Binder, Frish, and Jäckle [18] generalized the linearized 

Cahn—Hilliard’s theory to the case of existence of a slowly relaxing 

variable. Their calculations showed that the instability of the system is 

not of the standard diffusive type, but rather it is controlled by the re-
laxation of the slow structural variable. Recently, a hyperbolic diffu-
sion equation with phase separation was derived in Refs [19, 20] from 

the formalism of extended irreversible thermodynamics [21]. It has 

been proposed that the hyperbolic equation is able to describe process 

of rapidly quenched decomposition for short periods of time, large 

composition gradients or deep supercoolings within a system. Finally, 

Grasselli et al. [22] mathematically analyzed extended Cahn—Hilliard’s 

equation with hyperbolic relaxation of the diffusion flux. Their treat-
ments have been devoted to one-, two-, and three-dimensional cases of 

hyperbolic spinodal decomposition [23—25] to establish existence of the 

global and exponential attractors for different phase spaces. These in-
vestigations [18—20, 22—25] show that evolution of phase separation in 

deeply supercooled or rapidly quenched systems might be analyzed us-
ing predictions of hyperbolic transport equation. 
 It is known that considering the phase separation processes one need 

to take into account corresponding fluctuations, which lead to memory 

effects in the system dynamics. Memory effects in generalized trans-
port equations play a relevant role at high frequency or high speed of 

perturbations. The influence of the non-vanishing relaxation time of 
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the diffusion flux on the propagation of fast crystallization fronts has 

been studied [26, 27] in consistency with extended thermodynamics 

[21]. The memory effects play an important role in the propagation of 

phase interfaces during fast phase transitions [20]. 
 Fluctuations for slow (i.e. internal energy, solute density etc.) and 

fast variables (e.g., heat flux and atomic diffusion flux) have been con-
sidered frequently. The fluctuations of the heat flux and the viscous 

pressure were stressed for the first time by Landau and Lifshitz [28], 

who derived the expressions for their correlation. In Refs [29, 30], the 

role of rapid fluctuations of the heat flux as a stochastic source has 

been considered within the extended thermodynamic formalism. In 

these works, a unified description of slow and fast heat fluctuations 

has been made [31] for equilibrium and non-equilibrium steady states. 

The same idea about separation of slow and fast variables to study fluc-
tuations in a system of particles with inertia has been realized within 

the supersymmetric path-integral representation [32]. Besides density 

fluctuations, we explore the fluctuations of the diffusion flux and in-
vestigate their role in two different kinds of descriptions: (i) when the 

diffusion flux behaves as an independent fluctuating variable; (ii) the 

fluctuating part of the flux behaves as a stochastic noise in the evolu-
tion equation for the density. 
 To study the above-mentioned spatiotemporal phenomena in sto-
chastic analysis, several analytical methods can be used. A linear sta-
bility analysis allows us to set the stability of a homogeneous state with 

respect to small perturbations in systems with fluctuating sources 

[33]. A fundamental study of noise-induced phase transitions can be 

provided by means of dynamic renormalization group theory [34]. In 

analytical investigation of noise-induced phenomena, a mean field ap-
proach is widely exploited (see Refs [35—38]). Despite the fact that the 

linear stability analysis can be used for a wide class of systems, the re-
normalization group approach cannot be used directly for all models of 

stochastic dynamics. The mean field theory has several modifications 

for systems with non-conserved and conserved dynamics. Such ap-
proach can be extended to a large number of stochastic systems to give 

a qualitative prediction of noise induced ordering and disordering 

phase transitions. 
 The main idea of the present review is to synthesize the previous re-
sults on hyperbolic model of spinodal decomposition and to analyze its 

predictions in comparison with outcomes of the parabolic model of 

Cahn and Hilliard. Formally, this review can be divided in two parts: 
the first one is devoted to study the hyperbolic model in the determi-
nistic case, where we compare it with parabolic model for phase separa-
tion; in the second part, we discuss properties of two above stochastic 

models. In Section 2, free energy functional leading to hyperbolic gov-
erning equation for diffusion and phase separation is analyzed. Using 
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dispersion relation, the main propagative peculiarities, such as phase 

and group speeds, are presented. Critical wavelength and time for in-
stability together with amplification rate for hyperbolic decomposition 

are derived. Peculiarities of evolution of patterns are analyzed in Sec-
tion 3 by numerical solution of the hyperbolic and parabolic transport 

equations. Here, we discuss a method to define the structure factor and 

results obtained in comparison with the outcomes from the Cahn and 

Hilliard's theory. Section 4 deals with stochastic approaches related to 

study the phase separation in parabolic and hyperbolic models. Start-
ing from a stochastic parabolic model with a concentration dependent 

mobility, we introduce internal fluctuations, obeying fluctuation dis-
sipation relation with an intensity reduced to the bath temperature. 

We show that at late stages of the system evolution the domain size 

growth (Lifshitz—Slyozov) law can be generalized in this model. Study-
ing the stationary case in the mean field approximation, we present 

results of re-entrant behaviour of the effective order parameter, when 

it takes nontrivial values inside a fixed interval of the system parame-
ters, and prove analytical investigations by computer simulations. In 

order to discuss stochastic hyperbolic model, we start with hyperbolic 

transport investigations. After, we consider stochastic hyperbolic 

model for phase separation and compare results obtained for two above 

stochastic models. Finally, in Section 5, a summary for the results is 

proposed. 

2. HYPERBOLIC MODEL FOR SPINODAL DECOMPOSITION 

In this Section, we introduce the hyperbolic model for spinodal de-
composition. Starting from the hyperbolic transport equation, we 
analyze equilibrium fluctuations in the system described by two 
commensurable variables such as solute concentration and diffusion 
flux and discuss spectral properties of these fluctuations (Subsec-
tion 2.1). In Subsection 2.2, we discuss the hyperbolic model for 
phase separation in the deterministic case. The detailed study of the 
model is presented in Subsections 2.3, where we obtain the disper-
sion relation, group and phase speed, and perform the correspond-
ing analysis, in Subsection 2.4 we discuss critical parameters for 
the hyperbolic model and analyze the structure function behaviour. 

2.1. Hyperbolic Transport 

Let us consider an isothermal and isobaric binary system (both the 

temperature T  and the pressure P  are constants) consisting of atoms 

A  and B . Following assumptions of Cahn [13], the system is repre-
sented as an isotropic solid solution free from imperfections and with 
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the molar volume independent of concentration of A- and B-atoms. 
 The system under study is described by the particle balance equa-
tion:  

 = ,
c

t

∂ −∇ ⋅
∂

J  (1) 

where c is the particle density of a solute in a binary system, J–
the diffusion flux, and t–the time. The diffusion flux is assumed 
to be described by the Maxwell—Cattaneo relaxation equation [20, 
21, 26, 27],  

 = ,D D c
t

∂τ + − ∇
∂
J

J  (2) 

where Dτ  and D are the relaxation time and diffusion constant, re-
spectively. The relaxation term is negligible for steady states or 
low-frequency perturbations. It becomes dominant at high frequen-
cies or fast speed of propagation. 
Density Profiles. Combining Eqs (1) and (2), one gets the following 
equation of a hyperbolic type  

 .= 2
2

2

cD
t

c

t

c
D ∇

∂
∂+

∂
∂τ  (3) 

Equation (3) predicts the propagation of the density profile with a 
sharp front moving with a finite speed DV  inside the undisturbed 
system. To show this feature of hyperbolic transport, we find an 
analytical solution of Eq. (3) for the semi-infinite (one-dimensional) 
space by choosing the initial and boundary conditions in the form 
( ,0) fc t c= , 0(0, ) ( , )c x c t x c= → ∞ = , (0, ) 0c x t∂ ∂ =  (where x is a 

spatial coordinate). 
 Under these conditions, the solution is described by the following 
expressions [39, 40]:  
 behind the diffusion front, 0 < Dx tV≤ ,  

 0 0 0 = /
( , ) = ( ) exp( / ) ( )( / ) ( , )d ,

t

f a f a t x VD

c t x c c c x l c c x l f t x t+ − − + − ∫  

 D D

DD

t t x V
f t x I

t x V

⎡ ⎤− τ −
= ⎢ ⎥τ− ⎣ ⎦

2 2 2 1/2

12 2 2 1/2

exp( / 2 ) ( / )
( , )

2( / )
; (4) 

 at the diffusion front, Dx tV= ,  

 f a f Dc t x c c c x l c c c t= + − − ≡ + − − τ0 0 0 0( , ) ( ) exp( / ) ( ) exp( / 2 ) ; (5) 

 ahead of the diffusion front, DtV x< < ∞ ,  
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 0( , ) .c t x c=  (6) 

Here, 
1/2( / )D DV D= τ  and 

1/22( )a Dl D= τ  are the diffusion speed and 

the attenuation distance in the high-frequency limit [41], respectively, 

and 1I  is a modified Bessel function of the first order. 
 The concentration profiles described by Eqs (4)—(6) are shown in Fig. 
1. In contrast with the concentration profiles described by the para-
bolic differential equation (Fick’s diffusion), the concentration pro-
files in the hyperbolic case have a sharp diffusion front which moves 

with the speed DV  (Fig. 1). This diffusion front separates the spatial 
regions where diffusion occurs ( 0c c>  at Dx V t< ; Eq. (4)) and where 

diffusion is absent ( 0c c=  at Dx V t> ; Eq. (6)). Therefore, the position 

of the diffusion front may be examined as a depth, DtV , of density 

penetration into a binary system. As it is shown in Fig. 1, the ampli-
tude of the diffusive front at Dx V t=  decreases with increasing time 

and spatial coordinate, according to Eq. (5).  

2.1.1. Equilibrium Fluctuations 

Even though solution (4)—(6) describes a smooth profile of density 

(with sharp diffusion front) fluctuations always exist in a thermody-

 

Fig. 1. Profiles of density c at different moments 1 2 3< <t t t  as predicted 
by solution (4)—(6). Every profile moves with the sharp discontinuity 
front, which has the diffusion speed DV . The x-coordinate of this discon-
tinuity front is given by DtV , and the amplitude of the front is decreasing 
in time as − τexp[ (2 )]Dt . The density profile at 3 10 Dt t= ≥ τ  is matched to 
those one described by a partial differential equation of a parabolic type 
(i.e., of the form of Eq. (3) with 0Dτ = ). 
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namic system. Indeed, techniques of light scattering or neutron scat-
tering allow to explore details of the dynamics of density perturbations 

in the system, and it has fostered progress in nonequilibrium statisti-
cal mechanics [42]. Following Ref. [40], we describe features of the 

system described by equations (1) and (2) related to c and J fluctua-
tions in equilibrium and to stochastic noise. 
 The equilibrium second moments of fluctuations of c  and J  are ob-
tained from the Einstein’s equation for the probability of fluctuations 

[28, 43], namely  

 
2

exp ,
2 B

s
Pr

k T

⎡ ⎤δ∝ ⎢ ⎥
⎣ ⎦

 (7) 

where entropy ( , )s c J  is based on the independent thermodynamic vari-
ables c and J. It is known (see, e.g., Ref. [43], Chapter 15) that Ein-
stein’s equation (7) considered as an approximate Gaussian distribu-
tion function predicts the second moments correctly, but it does not 

predict third and higher moments accurately. However, since we are 

only interested in the second moments, we restrict ourselves in this 

Section to the use of the simple Einstein formula (7). 
 To obtain the second differential 

2sδ  of entropy in Einstein’s equa-
tion (7), one needs to choose the form of the Gibbs equation for en-
tropy. The generalized Gibbs equation, which incorporates slow and 

fast thermodynamic variables, is written as [21]  

 
τμ= − − ⋅1

,Dds du dc d
T T TD

J J  (8) 

where u is a density of internal energy, D is related to the usual diffu-
sion coefficient D through D D c= ∂μ ∂ , and 1 2μ = μ − μ  is the relative 

chemical potential of the solute with respect to the one of the solvent. 
 We focus our attention on the fluctuations of c and J and assume du 

negligible for the sake of simplicity. Then, from Eq. (8), we get the sec-
ond differential of the entropy as  

 2 2 21
( ) ( ) .Ds c J

T c TD

τ∂μδ = − δ − δ
∂

 (9) 

With the definition (7) and taking the second variation of s from Eq. 

(9), the probability of fluctuations is described by  

 2 2( , ) exp ( ) ( ) ,
2 2

D

B B

vv
Pr c J c J

k T c k TD

⎡ ⎤τ∂μ⎛ ⎞δ δ ∝ − δ − δ⎢ ⎥⎜ ⎟∂⎝ ⎠⎢ ⎥⎣ ⎦
 (10) 

where v  is a small volume in which the fluctuations cδ  and δJ  occur. 
The second moments of fluctuations are given by  
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 2 2( ) , ( ) .
( / ) ( / )

B B B

T D D T

k T k TD k TD
c J

v c v v c
〈 δ 〉 = 〈 δ 〉 = =

∂μ ∂ τ τ ∂μ ∂
 (11) 

In what follows, we discuss two important points: (i) the power spectra 

of the fluctuations of c and J, (ii) the description of the stochastic 

sources in the system (1) and (2). 

2.1.2. Power Spectra of Density and Flux Fluctuations 

Let us define the correlation functions for the fluctuations of c and J 

in the following usual form 

 
( , , , ) ( , ) ( , ) ,

( , , ) ( , ) ( , ) ,
c

J

C t t c t c t

C t t t t

′ ′ ′ ′≡ 〈δ δ 〉
′ ′ ′ ′≡ 〈δ δ 〉

r r r r

r, r J r J r
 (12) 

where r is the position vector of a point in the system. Since we con-
sider equilibrium (homogeneous, time-invariant state), one has  

 
( , , , ) ( , ),

( , , , ) ( , ),
c c

J J

C t t C t t

C t t C t t

′ ′ ′ ′= − −
′ ′ ′ ′= − −

r r r r

r r r r
 (13) 

i.e. the correlation functions depend only on relative distances rr ′−  

and on the difference in time t t′− . We are interested in the Fourier 

transforms of the quantities in Eq. (13), namely  

 

i t i
c c

i t i
J J

S e e C t d dt

S e e C t d dt

ω

ω

ω =

ω =

∫
∫

kr

kr

k r r

k r r

( , ) ( , ) ,

( , ) ( , ) .
 (14) 

These expressions represent fluctuation spectra and have special theo-
retical and practical interest, as they may be measured by means of 

light scattering or neutron scattering techniques [42]. 
 To obtain an explicit form of the fluctuation spectra we first write 

Fourier transform (in space) and Laplace transform (in time) of equa-
tions (1) and (2). Using the standard procedure described in Refs [21, 

42], we arrive at  

 
D

S c S i J S c

S J S J S i D c S J

δ + δ = δ
τ δ + δ + δ = δ

k k k

k k k k

k

k

( ) ( ) (0),

( ) ( ) ( ) (0),
 (15) 

where ( )c Sδ k  and ( )J Sδ k  are the Fourier−Laplace components of cδ  

and Jδ , respectively. Then, we have  

 
2

( ) (0)11
.

( ) (0)(1 )
D

D

c S cS i D

J S Ji SS S Dk

δ δ+ τ −⎛ ⎞ ⎛ ⎞⎡ ⎤
=⎜ ⎟ ⎜ ⎟⎢ ⎥δ δ−+ τ + ⎣ ⎦⎝ ⎠ ⎝ ⎠

k k

k k

k

k
 (16) 
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In equilibrium state (where | | 0→k ), the crossed second moments, 
(0) (0)c J〈δ δ 〉k k , vanish because they have opposite time-reversal par-

ity. 
 Then, from Eq. (16), we have 

 

2
2

2

2

1
( ) (0) | (0)| ,

(1 )
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To obtain the time Fourier transform, one may write 
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Finally, we obtain  
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The corresponding expressions for 2| (0)|c〈 δ 〉k  and 2| (0)|J〈 δ 〉k  in equi-
librium obtained from Eq. (11) are described by  

 B B

T D T

k T k T
c J

v c v c
〈 δ 〉 = 〈 δ 〉 =

∂μ ∂ τ ∂μ ∂k k
2 2 2

| (0)| , | (0)| .
( / ) ( / )

 (19) 

Note that, in Eq. (19), the function ( , )cS kω  has a maximum at a 
frequency mω  given by  

 
1/22 2(2 1) (2 ) .m D DDk⎡ ⎤ω = τ − τ⎣ ⎦  (20) 

The fact that the maximum is at 0mω ≠  indicates propagation of 
density waves with the speed / mk ω , in contrast with the situation 
when the maximum is at 0mω = , which means purely diffusive 
transport. It is clear from Eq. (20) that, to observe such a maxi-
mum, i.e., the propagation of density wave, it is needed that 

1/2(2 )c Dk k D −> ≡ τ . 
 Thus, for ck k< , transport is diffusive, and for ck k> , the den-
sity waves may propagate. 
 This analysis is analogous to the analysis of the transverse veloc-
ity correlation function in generalized thermodynamics for the 
Maxwell viscoelastic model [42], which is consistent with the for-
malism of extended irreversible thermodynamics [21]. 
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2.2. Hyperbolic Spinodal Decomposition 

Let us consider a region of phase diagram, in which one phase mix-
ture is unstable with respect to decomposition. This is a spinodal 
region where curvature of free energy is negative: 

 
2

2
0,

f

c

∂ <
∂

 (21) 

and the spinodal itself is defined by  

 
2

2
0,

f

c

∂ =
∂

 (22) 

where f is the Helmholtz free energy per unit volume and c is the 
concentration of B atoms. 
 For a given temperature, the free energy f is based on the follow-
ing variables: concentration c, gradient of concentration c∇ , and 
solute diffusion flux J. Dependence of free energy on concentration 
is due to existence of a diffuse interface between appearing phases 
in which high concentration gradients may exist. Dependence of 
free energy on diffusion flux reflects of the fact that decomposition 
may proceed with high rates comparable with the speed 

1/2( )D DV D= τ  of the front of solute diffusion profile, where D is 
the diffusion coefficient and Dτ  the time for relaxation of the sol-
ute diffusion flux to its steady-state value. Thus, the selected set of 
independent variables { , , }c c∇ J  consists of slow conserved variable 
c, fast non-conserved variable J, and gradient variable c∇ . Analo-
gous set of variables is generally analyzed within the context of ex-
tended thermodynamics [44] and it is used for models of fast phase 
transformations [20]. 
Free Energy Density. Expanding the dependence of the free energy 

density on the concentration gradients and diffusion flux, one gets 

[45]  
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J
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 (23) 

The following points regarding Eq. (23) can be accepted. First, we 
define ( ,0,0) ( )hf c f c=  as the free energy density of a homogeneous 
system with no gradients and fluxes. Second, the term ( )c f c∇ ⋅ ∂ ∂ ∇  
must be zero because the free energy of the system does not depend 
on the sign of the concentration gradient. Third, one can accept 
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that the derivative of the free energy with respect to the diffusion 
flux is linear by the flux: ( 2)Jf∂ ∂ = αJ J  as approximation consis-
tent with an extended thermodynamics [21]. And fourth, the next 
terms of expansion (23) can be omitted as a nonlinear terms in flux 
J. Therefore, Eq. (23) can be rewritten as  

 
2

2( , , ) ( ) ( ) ,
2 2
c J

h

r
f c c f c c

α
∇ = + ∇ + ⋅J J J  (24) 

where 2 2 2( ( ) )c cr f c ∇ == ∂ ∂ ∇ 0  and coefficient Jα  is a characteristic of 
non-Fickian diffusion which assumed to be [21]  

 D

T constTD c =

τ ∂μ⎛ ⎞α = ⎜ ⎟∂⎝ ⎠
 (25) 

with a difference μ of the chemical potentials for both chemical 
components. Within the limits of instant relaxation, i.e., 0Dτ → , 
the term with fluxes vanishes and Eq. (24) gives the free energy 
density ( , )f c c∇  of the standard (Ginzburg−Landau or Cahn−Hil-
liard) form applicable for local equilibrium system. 
Interpretation of Free Energy for Local Nonequilibrium States. 
Going beyond local equilibrium requires re-examination in depth 
such basic and conceptually relevant concepts as entropy, tempera-
ture, pressure or chemical potential under more general circum-
stances [21, 46]. Therefore, free energy density (24) has to be inter-
preted in terms of a local thermodynamic potential [47, 48]. 
 Equation (24) defines thermodynamic potential with both local 
equilibrium contribution ( )hf c  and purely local nonequilibrium con-
tribution ( / 2)α ⋅J J  (under spatial inhomogeneity defined by the 
gradient term). Hence, for the local equilibrium part ( )hf c  a local 
ergodicity (i.e. the system needs to sample the phase space) is true. 
However, as soon as we postulated diffusion flux with a finite re-
laxation time, this means that the local nonequilibrium contribution 
α ⋅J J  reflects the existence of a slow physical process, which is the 
jump of solute atoms [40]. Considering ergodicity of a phase space 
for nonequilibrium situation, one may well refer to statistical ef-
fects in fast spinodal decomposition due to existence of many parti-
cles (atoms and molecules) within local volumes. Since the liquid 
demixing proceeds very fast, the particles have no time enough to 
sample all the phase space. Thus, the number of microstates acces-
sible to each of them will be lower than in equilibrium. This will 
imply an increasing in the free energy with respect to the local 
equilibrium contribution ( )hf c . This is one of the ways to interpret 
the nonequilibrium contribution ( / 2)α ⋅J J  to the free energy (24) 
that is the simplest conceivable way to express such increasing in 
the free energy. 
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 From the phenomenological pint of view, a purely non-equilibrium 

contribution ( / 2)α ⋅J J  to the free energy (or entropy) density for sys-
tems under spinodal decomposition controlled by atomic diffusion is 

explained as a kinetic energy. Thermodynamic interpretation has been 

recently made [49] for this contribution in the framework of multi-
component fluids and of dipolar systems having magnetic moments 

with non-vanishing inertia. A model, which takes this kinetic contri-
bution, is called ‘hyperbolic’ model of spinodal decomposition, because 

it leads to the constitutive equation of hyperbolic type. In the limit of 

instantaneous relaxation, i.e. 0Dτ → , the term α ⋅J J  vanishes and Eq. 

(24) gives the free energy density ( , )hf c c∇  of Cahn−Hilliard’s form 

[12, 13] applicable for local equilibrium system. 
Free Energy Functional. Taking Eq. (24), the total Helmholtz free en-
ergy as a free energy functional is given by  
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2( , , ) ( ) ( ) ,
2 2
c J

hv

r
F c c f c c dV

⎡ ⎤α
∇ = + ∇ + ⋅⎢ ⎥

⎣ ⎦
∫J J J  (26) 

where V is a sub-volume of the system. Evolution of ( , , )F c c∇ J  with 

time t is described by  

 
ex in

,
dF dF dF

dt dt dt
⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (27) 

where ex( )dF dt  is the external exchange of the free energy and 

in( )dF dt  is the internal change of the free energy inside the system. 

The latter is defined as a dissipative function. Using the procedure de-
scribed in Refs [19, 20] and applied to Eq. (26), one can obtain  

 ( )2 2 2

ex

( ) ,c n c c n

dF c
r c f r c J d

dt t
′

∂⎛ ⎞ ⎡ ⎤= ∇ + − + ∇ Ω⎜ ⎟ ⎢ ⎥∂⎝ ⎠ ⎣ ⎦∫  (28) 

 ( )2 2

in

,c c n J

dF
f r c dV

dt t

∂⎛ ⎞ ⎡ ⎤′= ⋅ ∇ − ∇ + α⎜ ⎟ ⎢ ⎥∂⎝ ⎠ ⎣ ⎦∫
J

J  (29) 

where Ω  is the outer surface of sub-volume V, nJ  is the diffusion flux 

pointed by the normal vector n , and /c hf f c′ = ∂ ∂ . As it follows from 

Eq. (29), the dissipative function includes the term J tα ∂ ∂J , which 

has a clear physical meaning: far from equilibrium, the diffusion flux 

provides additional ordering that is leading to increasing of the dissi-
pation. 
 Around a steady state, dissipative function (29) must decrease in 

time, so that the free energy of the entire system is decreasing. This 

condition implies a relation between fluxes and forces, which is, in the 

simplest case, assumed to be linear [21]. For Equation (29), it gives the 

following evolution equation for the diffusion flux 
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 ( )2 2 ,c c JM f r c M
t

∂′= − ∇ − ∇ − α
∂
J

J  (30) 

where M is the atomic mobility. Together with the atomic mass balance  

 ,
c

t

∂ = −∇ ⋅
∂

J  (31) 

Eq. (30) leads to the following governing equation  

 ( )2
2 2

2
,D c c

c c
M f r c

t t

∂ ∂ ⎡ ⎤′τ + = ∇ ⋅ ∇ − ∇⎢ ⎥⎣ ⎦∂ ∂
 (32) 

which is the same that it has been previously derived from the entropy 

functional [19, 20]. Equation (32) is a general partial differential 
equation of a hyperbolic type with the decomposition delay described 

by the term 
2 2/D c tτ ∂ ∂ . It allows for describe both diffusion mecha-

nism and wave propagation of chemical components. 
 A natural boundary condition, originating from external exchange 

of the free energy (28), is given by  

 ( )2 2 2 0,c n c c n

c
c f c J

t

∂ ′ε ∇ − − ε ∇ =
∂

 (33) 

where nJ  and nc∇  are the projections of the diffusion flux and ‘nabla’-
operator, respectively, on the normal vector to the boundary of the 

volume 0υ . Equation (33) represents a dynamical boundary condition, 
which shows that the product ( ) nc t c∂ ∂ ∇  should be balanced with the 

product c nJμ  on the boundary of the subvolume V. From this, in par-
ticular, it follows that if the concentration is fixed, constc = , then the 

flux is absent, 0nJ = , on the boundary Ω . In the standard parabolic 

situation described by the Cahn—Hilliard equation ( 0Dτ → ), one has 

proportionality between the flux and concentration gradient, 

n nJ c∝ ∇ , and they both can be cancelled from Eq. (33). In this case, 

equation (33) transforms, with some scaling constant, into the known 

boundary condition analyzed by Miranville and Zelik (see Eqs (2) and 

(1.2) from Refs [50, 51], respectively). Hence, Eq. (32), endowed with a 

dynamic boundary condition (33), is a general partial differential 
equation of hyperbolic type with the decomposition delay described by 

the inertial term 
2 2/D c tτ ∂ ∂ . Mathematically, the problem of Cahn—

Hilliard equation with the term 
2 2/D c tτ ∂ ∂ , endowed with proper 

boundary conditions, has been studied in one-, two-, and three-
dimensions [23—25] to establish existence of the global and exponential 
attractors for different phase spaces. 
 Because we focus on the analysis of the initial stages of decomposi-
tion described by Eq. (32) (i.e., when the large concentration gradients 

exist and short periods of time are important) one may neglect all 
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terms not linear in c. This one yields 

 
2

2 2 4

2
,D cc c

c c
Mf c Mr c

t t

∂ ∂ ′′τ + = ∇ − ∇
∂ ∂

 (34) 

where 
2 2

cc hf f c′′ = ∂ ∂ . As 0Dτ → , Eq. (34) transfers into the classic 

Cahn—Hilliard equation [12, 13]. In the present form, Eq. (34) can be 

considered as a modified Cahn—Hilliard equation, which is a linearized 

partial differential equation of a hyperbolic type. This equation is true 

for spinodal decomposition with local nonequilibrium diffusion (diffu-
sion with relaxation of the solute flux). Such type of decomposition is 

expected for short periods of time, large characteristic velocities of 

process, large concentration gradients, or under deep supercoolings.  

2.3. Dispersion Relation and Speeds for Atomic Diffusion 

Main characteristics of diffusion can be found from dispersion analy-
sis of the linearized hyperbolic Cahn—Hilliard equation (34). These are 

the phase speed that characterizes propagation of a single (selected) 

harmonic, the group speed, which is characteristic of a wave packet, 

critical wavelength for decomposition, and critical time for instability, 

which both characterize developing coherent structure in decomposi-
tion [52].  
 We consider the elementary exponential solution of Eq. (34) in the 

following form  

 0( , ) exp[ ( ( ) )],kc z t c a i kz k t− = − ω  (35) 

where the dispersion relation ( )kω  is given by  

 

1/2
2 2 2

2

( ) 1
( ) .

2 4
cc c

D D D

Mk f r ki
k

⎛ ⎞′′ +
⎜ ⎟ω = − ± −
⎜ ⎟τ τ τ⎝ ⎠

 (36) 

The upper and lower signs for ( )kω  in Eq. (36) correspond to the 

branches, which are responsible for the wave propagation in the posi-
tive and negative z-directions, respectively. Qualitative behaviour for 

( )kω  is shown in Fig. 2. 
 It can be seen that the real part of ω  begins to exist only from some 

critical value, 0k k=  (Fig. 2, a). This value defines confluence of two 

branches for imaginary part of ω  (Fig. 2, b). In addition, one can de-
fine other two critical values for the wave-vector k. The critical value 

ck k=  defines a point from which ω  takes positive values of its imagi-
nary part (Fig. 2, b). For ck k> , solution (35) exponentially grows in 

time and decomposition begins to proceed irreversibly. The critical 
value mk k=  gives a maximal positive value for ω  (Fig. 2, b). Fre-
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quency ( )mkω  defines the mostly unstable mode with which pattern 
evolves during phase decomposition.  
 Within the local equilibrium limit 0Dτ → , Eq. (36) arrives to 
the following approximation  

 ( )2 2 2( ) 1 1 2 ( ) .
2 D cc c

D

i
k Mk f r k⎡ ⎤′′ω ≈ − ± − τ +⎢ ⎥⎣ ⎦τ

 (37) 

Equation (37) shows that one of the roots is going to −∞  along 
imaginary axis by the law ( ) Dk iω ∝ τ . This leads to exponential de-
cay of the solution (35). The second root of Eq. (37) is finite and it 
is equivalent to classic Cahn—Hilliard relation  

 2 2 2( ) ( ).cc ck iMk f r k′′ω ≈ − +  (38) 

Thus, local equilibrium limit for dispersion relation (36) gives two 
different roots: the first one is diverges and the second one ap-
proaches dispersion relation (38) of Cahn and Hilliard. 
Phase Speed. The values of the wave vector 0k  above which relation 
(36) has the real part, Fig. 2, a, is found from condition  
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0 2
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2
c

cc cc
c D

r
k f f

r M

⎛ ⎞
′′ ′′⎜ ⎟= + −

⎜ ⎟τ⎝ ⎠
 (39) 

 
a                                                                   b 

Fig. 2. Dispersion relations for hyperbolic Cahn—Hilliard equation; Eq. (36). 
(a) Real part of frequency, ( ( )).kℜ ω (b) Imaginary part of frequency, ( ( )).kℑ ω  
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For 
2 2

0k k>  and real values of ( )kω , one can obtain from Eq. (36) the 

phase speed:  

 ( )1/2
1 2 2 2( ) / ( ) ( ) (2 )p D D cc ck M f r k k− −′′υ = ℜ ω ℜ = τ τ + − , (40) 

which may propagate in both positive and negative spatial directions. 

The speed pυ  incorporates a motion for one of separated single har-
monics. It can be compared with the predictions of the partial differen-
tial equation of a hyperbolic type for solute diffusion without phase 

separation. Indeed, analysis of dispersion relation for mass transport 

equation 
2 2 2/ /D c t c t D cτ ∂ ∂ + ∂ ∂ = ∇  of a hyperbolic type leads to the 

following expression [53]:  

 

1/2

2 2 1/2

2
.

( )p
D D c

D
−

⎛ ⎞
υ = ⎜ ⎟τ + τ + ω⎝ ⎠

 (41) 

Taking into account that 0cr = , for the zero spatial atomic correla-
tion, ccMf D′′ =  is the diffusion coefficient in Eq. (40), we use the rela-
tion k ∝ ω  for high frequency of disturbances’ propagation. Then, 

both expressions (40) and (41) lead to the same result  

 p D DD Vυ = τ = ω → ∞1/2( / ) with .  (42) 

In Equation (42), the phase speed pυ  is equal to solute diffusion speed 

DV , which is a maximal speed for propagation of the solute diffusion 

disturbance (profile). 
 Imaginary part of the phase speed, ( ) (2 )p Di kℑ υ = − τ , specifies the 

amplification rate for a given harmonic. With 0k k< , harmonics do not 

move with possible changing of their own amplitudes. For both real and 

imaginary parts of pυ  (with 0k k> ), the harmonics move and change 

their own amplitudes. The behaviour is shown in Fig. 3 for ( )p kυ . 
Group Speed. Concentration disturbances propagating by diffusion 

can be considered as an undistorted wave packet moving with the 

group speed given by  

 
( )

( ).
k

W k
k

∂ω = ±
∂

 (43) 

Using Eq. (36), calculation of the group speed W gives  

 
2 2

2 2 2 1/2

2 ( 2 )
( ) .

(4 ( ) 1)

cc c

D cc c

kM f r k
W k

k M f r k

′′ +
=

′′τ + −
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Dependence ( )W k  is shown in Fig. 3. It specifies a speed for concentra-
tion profiles envelope. One may see, as for the phase speed pυ , the real 
values for W given by Eq. (44) exist only at 0k k> . In contrast with the 
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behaviour of pυ , the imaginary part of ( )W k  may exist only at 0k k< . 

 
a                                                  b 

Fig. 3. Phase and group speeds for hyperbolic Cahn—Hilliard equation. (a) 
Real part ( )pvℜ  of phase speed (solid line) and real part ( )Wℜ  of group 
speed (dashed-dotted line). (b) Imaginary part ( )pvℑ  of phase speed (solid 
line), and imaginary part ( )Wℑ of group speed (dashed-dotted line). 

TABLE 1. Predictions for characteristic speeds of diffusion. 

Equation Phase speed pυ  Group speed W 

Parabolic 

diffusion 

equation 
ikD−  with 2ik Dω = −  2ikD−  

Hyperbolic 

diffusion 

equation 

24 1

2
D

D

i Dk
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− ± τ −
τ

 2

2

4 1D
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Dkτ −
 

Parabolic 

Cahn—
Hilliard 
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Hyperbolic 
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equation 
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2 D h c
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i
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 Analysis of standard parabolic and hyperbolic diffusion equations 
[53] as well as parabolic and hyperbolic equations for spinodal de-
composition [52], presented in this Subsection for diffusion speeds, 
leads to comparison of both approximations summarized in Table 1. 

2.4. Critical Parameters for Hyperbolic Decomposition 

2.4.1. Critical Wavelength for Decomposition 

Cahn [13] has found a critical wavelength cλ , above which infinitesi-
mal sinusoidal fluctuation of concentration is irreversibly grown. Par-
ticularly, he confirmed the concept of Hillert [54] that cλ → ∞  with 

approaching the spinodal, at which one has 
2 2/ 0f c∂ ∂ = . 

 To find the critical wavelength for decomposition under local non-
equilibrium diffusion, we expand ( )hf c  in Eq. (26) about some concen-
tration 0c  that is 

 
0 0

2 2
0

0 0 2

( )
( ) ( ) ( ) ...

2
h h

h
c c c c

c cdf d f
f c f c c c

dc dc= =

⎛ ⎞−⎛ ⎞= + − + +⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

. (45) 

The composition is represented along the z-axis by a series of sinusoi-
dal waves with components of the following form  

 0 cos( ),c zc c a k z− =  (46) 

where ca  is the amplitude and zk –the frequency of concentration 

wave. 
 Substituting Eq. (46) into Eq. (45), we perform integration of the 

functional (26) over the volume υ . Then, for the difference of the 

Helmholtz free energy, 0( , , ) ( )hF F c c f c dVΔ = ∇ − ∫J , between a system 

with concentration (46) and a homogeneous system, respectively, one 

gets: 

 
2

2 2 .
4
c

cc c z

aF
f r k

V

Δ ⎡ ⎤′′= +
⎣ ⎦

 (47) 

 For the reasonable cases of the positive surface tension, 
2 0cr > , one 

can consider two important points. 
 First, with 0ccf ′′ >  the solution is stable against fluctuation of con-
centration of any wavelength: the free energy only increases in this 

case, 0FΔ > . 
 Second, with 0ccf ′′ <  the solution is unstable with respect to the 

critical wavelength for decomposition, which can merely be found by 

taking the zero value for the square bracket in Eq. (47):  
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1/2
22

2 .c
c

c cc

r

k f

⎛ ⎞π ⎜ ⎟λ = = π
⎜ ⎟′′−⎝ ⎠

 (48) 

with the critical value for wave vector given by  

 2 1/2( ) .c cc ck f r′′= −  (49) 

 Therefore, with 2 2 0hd f dc <  and for cλ > λ , the free energy de-
creases, 0FΔ < , and decomposition starts to proceed. Equation (49) 
clearly shows that as the composition tends to the values lying in 
the spinodal, 2 2 0f c∂ ∂ = , the critical wavelength approaches to in-
finity, cλ → ∞  [13, 54]. 

2.4.2. Amplification Rate of Decomposition 

Consider a real part of the solution (35) in the following form:  

 0 cos( ) exp( ) cos( ) exp( ).c c a kz t a kz t+ + − −− = ω + ω  (50) 

In this solution, signs ‘plus’ and ‘minus’ correspond to growing or 
decaying solutions, respectively, in time. Substitution of Eq. (35) 
into Eq. (34) defines a real part of the frequency as follows  

 ( )( )1/2
1 2 2 2(2 ) 1 1 4 .D D cc ck M f r k−

±
⎡ ⎤′′ω = τ − ± − τ +⎢ ⎥
⎣ ⎦

 (51) 

After expanding, the square root in Eq. (51) for 24 [D cck M f ′′τ +  
2 2] 1cr k+ ≤  one gets in the local equilibrium limit the expression:  

 ( )2 2 2

0
,lim cc c

D

k M f r k+
τ →

′′ω = +  (52) 

which is the kinetic amplification rate obtained by Cahn [13] for 
purely diffusion regime. Therefore, Eq. (51) can be interpreted as 
the kinetic amplification rate for both dissipative and propagative 
regimes of atomic transport described by Eq. (34). 
 From the amplification rate +ω  of decomposition, the maximum 
can be obtained by differentiation of Eq. (51) with respect to zk . 
The extremum condition, / 0zk+∂ω ∂ = , gives maximum frequency  

 ( )1/2
1 2( ) (2 ) 1 1 /m m D D cc ck Mf r− ⎡ ⎤′′ω = τ − + + τ⎢ ⎥⎣ ⎦

 (53) 

at  

 ( )1/2
2/ (2 ) with < 0.m cc c cck f r f′′ ′′= −  (54) 
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From Eq. (54), there follows that maximum wavelength, 2 /m mkλ = π , 

is equal to  

 

1/2
22

2 .c
m

cc

r

f

⎛ ⎞
⎜ ⎟λ = π
⎜ ⎟′′−⎝ ⎠

 (55) 

Consequently, maximum amplification rate allows for the wavelength 

(55) greater in exactly 2  times the critical wavelength (49) of insta-
bility against fluctuations of concentration. This result coincides with 

Cahn and Hilliard’s results for purely diffusion regime.  

2.4.3. Critical Time for Instability 

Let us evaluate the time of transitive period from the beginning of 
instability (with the beginning of growth of infinitesimal perturba-
tion) up to the arriving into the new metastable state. For the fast-
est growth of infinitesimal perturbation, the maximal frequency 

( )mkω  is responsible. Therefore, substitution of Eq. (48) into disper-
sion relation (36) leads to [52]  

 ( )1/2
2 2( ) 1 1 ( ) / .

2m m D cc c
D

i
k M f r

⎡ ⎤′′ω = − ± + τ⎢ ⎥τ ⎣ ⎦
 (56) 

Equation (56) adopts both real and imaginary parts for ω . Using 
maximal frequency (56), solution (35) can be rewritten as  

 0( , ) exp( ) exp( ),k cc z t c a ikz t t− =  (57) 
where 

 
2 2 1/2

2

(1 ( ) / ) 1

D
c

D cc c

t
M f r

τ
=

′′+ τ −
 (58) 

is the time for developing coherent structure. 
 Within the local equilibrium limit, 0Dτ → , we expand square root 

in Eq. (58) for 
2 2( ) / 1D cc cM f r′′τ = . One gets the following approxima-

tion 

 
2

2

4
,

( )

c
c

cc

r
t

M f
≈

′′
 (59) 

which can be found from the predictions of pure diffusion theory 

(parabolic transport equation) of Cahn and Hilliard. As a result, com-
parative analysis for parabolic and hyperbolic equations in spinodal 
decomposition is given in Table 2 for dispersion relations, critical 
wavelengths and times for instability. 
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2.4.4. Analysis of a Structure Function 

Different evolution of spinodally-decomposed systems exhibits differ-
ent structures (see Fig. 10). Experimentally, a typical structure after 

spinodal decomposition is observed as random, interconnected patterns 

with a characteristic length-scale related to maximal amplification rate 

of decomposition [4]. Experimental observations using scattering show 

a broad Bragg-like peaks, from which information about quenched 

structure during spinodal decomposition and decomposition rate can be 

read off. For such measurements, a main characteristic for the inten-
sity of scattering is a structure factor. Therefore, the structure factor 

can be taken as a parameter for characterization of analyzed evolutions 

and for verification of the model predictions with experimental data. 
 Consider the structure factor ( , )S tk , which describes the intensity 

of quasi-elastic scattering observed at time t after the quenching from 

the initial temperature iT  up to the final temperature fT . The function 

( , )S tk  can be interpreted as the respective correlation function of the 

concentration fluctuations, and it is defined as  

 ( , ) ( , ) ( , ) Tf
S t c t c t= 〈δ − δ 〉k k k . (60) 

To obtain expression for the time dependent structure factor (60), 

TABLE 2. Predictions of parabolic and hyperbolic models. 

Expression for 
Parabolic Cahn−Hilliard 

equation ( 0)Dτ →  Hyperbolic Cahn−Hilliard equation 

Dispersion  
relation, ( )kω  ( )2 2 2

cc ciMk f r k′′− +  

1/2
2 2 2

2

( ) 1

2 4
cc c

D D D

Mk f r ki ⎛ ⎞′′ +
⎜ ⎟− ± −
⎜ ⎟τ τ τ⎝ ⎠

 

Critical wave-
length, 

2 /c ckλ = π  
( )1/2

22 ( )c ccr f ′′π −  [13] ( )1/2
22 ( )c ccr f ′′π −  

Amplification 

rate, +ω  ( )2 2 2
cc ck M f r k′′ +  [13] ( )( )1/2

2 2 2

2

1 4 1

D

D cc ck M f r k

τ

′′− τ + −
 

Maximal wave-
length, 

2 /m mkλ = π  
( )1/2

22 2 ( )c ccr f ′′π −  [13] ( )1/2
22 2 ( )c ccr f ′′π −  

Critical time for 

instability, ct  ( )2 24 ( )c ccr M f ′′
 [52] ( )1/2

2 2

2

1 ( ) 1

D

D cc cM f r

τ

′′+ τ −
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we linearize Eq. (34) in terms of concentration inhomogeneity 
0( , ) ( , )c t c t cδ = −r r . This one yields  

 
2

2 2 4
2

( ) ( )
( ) ( )D cc c

c c
Mf c Mr c

tt

∂ δ ∂ δ ′′τ + = ∇ δ − ∇ δ
∂∂

. (61) 

Following the approach to the concentration fluctuations for the 
hyperbolic transport [40], Fourier transforms of ( , )c tδ −k  and 

( , )c tδ k  is expressed as  

 
( , ) exp( ) ( , ),

( , ) exp( ) ( , ).

c t d i c t

c t d i c t

δ − = ⋅ δ −

δ = ⋅ δ

∫
∫

k r k r r

k r k r r
 (62) 

Then, Eq. (61) for the structure factor (60) is given by  

 ( )2
2 2 2

2

( , ) ( , )
( , ).D cc c

d S t dS t
Mk f r k S t

dt dt
′′τ + = − +k k

k  (63) 

To solve this equation, we multiply LHS and RHS by exp( )i tω , 
where ω  is a frequency of the concentration inhomogeneity. After 
some algebra, solution of Eq. (63) is given by 

 
0 2 2 2 2

( ,0) / (1 ) ( ,0)
exp( ) ( , )

( )

D D

D cc c

dS dt i S
i t S t dt

i Mk f r k

∞ τ + + τ ω
− ω =

′′ω − τ ω + +∫
k k

k . (64) 

Defining the spectral distribution of fluctuations as  

 
0

( , ) 2 exp( ) ( , ) ,S i t S t dt
∞

ω = ℜ − ω∫k k  (65) 

one can find from Eq. (64) the spectral distribution for concentra-
tion fluctuations.  
 Equations (64) and (65) might describe modelled structure for 
hyperbolic scenario (with finite Dτ ) and parabolic scenario (for in-
stant relaxation with 0Dτ → ) and experimentally observed struc-
ture after quenching in spinodal decomposition. Such a description 
can give information about length scale of concentration fluctua-
tions and, as a consequence, about maximal amplification rate of 
decomposition for given scenario. 

2.5. Comparison with Experimental Data 

The function of the amplification rate predicted by the hyperbolic 
model has been compared in Refs [48, 55] with experimental data of 
Andreev et al. on phase-separated glasses [56, 57]. The amplifica-
tion rate (51) can be rewritten in the following form 
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1/2
1/22 2 2 2 2 2 21 4 (1 ) 1 1 4 (1 ) 1

,
2 2

D c cc D C

D D

D k r k f l k l k
+

⎡ ⎤′′+ τ − − ⎡ ⎤+ − −⎣ ⎦ ⎣ ⎦ω = =
τ τ

 (66) 

where /C c ccl r f ′′= −  is the correlation length, 1/2( )D Dl D= τ  is the 
diffusion length, and ccD Mf ′′= −  is the diffusion constant. 
 In addition, one can assume that the free energy of a binary sys-
tem can be replaced by  

 2 4
0 0( , ) ( / 1)( ) ( ) ,h c c cf T c f T T c c B c c⎡ ⎤= − − + −⎣ ⎦  (67) 

where cT  and cc  are the critical temperature and concentration, re-
spectively, cT T< , and 0 0B > . Equation (67) is often used in analy-
sis of kinetics of spinodal decomposition in glasses [58], and the pa-
rameters 0f  and 0B  are treated as phenomenological input parame-
ters of the theory, which are fitted to experiment [10]. 
 Figure 4 shows data for the relationship ‘ 2/ k+ω  versus 2k ’ ex-
tracted from experiments on a binary phase-separated glass [56, 
57]. They exhibit non-linear behaviour as predicted by Eqs (66) and 
(67) for the following material parameters: 142.3 10D −= ⋅  cm2/s, 

117.2 10D
−τ = ⋅  s, 86.2 10cr

−= ⋅  cm⋅ 3/ (mole cm )J ⋅ , / 0.85cT T = , 
0 0.15B = , 4

0 1.88 10f = ⋅  J/(mole ⋅ cm3), and 0.8cc c− =  mole frac-

 

Fig. 4. Dependence 
2/ k+ω  upon 

2k  given by the hyperbolic model (solid line; 
Eqs (66) and (67)) and scattering data of visible light (points, Refs [56, 57]). 

Experimental points were obtained on phase-separated SiO2−12 wt.% Na2O 

glass at T = 803 K. 
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tion. 
 In Figure 4, it is shown that good agreement is achieved between 
theory and experiment. This result is due to the fact that both 
lengths, correlation length Cl  and diffusion length Dl , appear in the 
theory [48, 55] that is also shown by Eq. (66). The interplay be-
tween these two lengths, i.e. the ratio /D Cl l , governs the transition 
as follows (in contrast with the linear Cahn−Hilliard−Cook model 
[12, 59] in which only correlation length Cl  is important in spinodal 
decomposition). With the increase of the correlation length Cl  in 
comparison with the diffusion length Cl , spinodal decomposition has 
the Cahn−Hilliard’s scenario (described by linear or non-linear para-
bolic diffusion equation). With D Cl l≈ , one can accept long-range 
interaction within the system and the Cahn−Hilliard’s scenario 
takes effect. With D Cl l>>  (namely, with 2 2D Cl l≥  [52]), short-
range interaction has effect and local nonequilibrium effect (such as 
relaxation of the diffusion flux to its steady state) plays dominant 
role in selection of the mode for decomposition. Thus, existence of 
these two length, existence of these two length, Dl  and Cl , makes 
the theory flexible enough to predict non-linear behaviour for am-
plification rate typically observed in experiments and to quantita-
tively describe experiments (Fig. 4). 

3. MODELLING OF SPINODAL DECOMPOSITION 

In this Section, we present main numeric procedures to be used in 
simulations of the spinodal decomposition in deterministic models 
of the hyperbolic type. Numerical approaches related for 1D and 3D 
simulations are presented in Subsections 3.1 and 3.2, respectively. 
 Features of hyperbolic spinodal decomposition can be observed in 
computational dynamics. 
 To model decomposition, Eqs (26), (30), and (31) are taken. From 
this system, the following dimensionless form of equations is as fol-
lows 

 

2

2 ,c
c

D

rF
f c

c l′

⎛ ⎞δ = − + ∇⎜ ⎟δ ⎝ ⎠
 (68) 

 ,
F

t c

∂ δ⎛ ⎞+ = ∇ ⎜ ⎟∂ δ⎝ ⎠

J
J  (69) 

 
c

t

∂ = −∇ ⋅
∂

J . (70) 

In these equations, the following scales are introduced: / ccM D f ′′=  
is the mobility, /D Dl D V=  the characteristic spatial length, Dτ  the 
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time scale as the diffusion relaxation time, and DV  the solute diffu-
sion speed as the scale for diffusion flux. To complete this system, 
the free energy density is chosen as a double-well potential  

 2 2
0( ) (1 ) 4,hf c f c c= −  (71) 

which has minima at 0c =  and 1c = , and it has a maximum at 0.5c = . 
 Boundary conditions are established from the previously obtained 
expression for the external exchange ex( / )dF dt  of the free energy: 
expression in square brackets of Eq. (28) must be zero. This condi-
tion implies the following equalities 0nc∇ =  and 0nJ =  on the 
boundary of the calculated domain. As a result, we arrive to a set 
of hyperbolic equations (68)−(71), which describes evolution by the 
hyperbolic model described in previous Section (in comparison with 
the parabolic model of Cahn and Hilliard using diffusion equation 
of a parabolic type). 

3.1. 1D Modelling 

For integration of equations (68)−(71), we use implicit Euler method 
of second order 2( )O τ . Let us introduce the following notations  

 
1 1

2 2

, ,
n nt t t t

c J
p s

t t= + τ = + τ

∂ ∂= =
∂ ∂

 (72) 

where τ  is the time step. Then one can define the system of equa-
tions for the time iterations in the following form  

 + + += + τ = + τ ≡ = + τ%( 1) ( ) ( 1/2) ( ) ( 1/2) ( )1 1
,  ,  .

2 2
n n n n n nc c p J J s c c c p  (73) 

Now, Eqs (68)−(71) can be rewritten as  

 
⎧ ∂ ⎛ ⎞+ + τ =⎪ ⎜ ⎟∂ ⎝ ⎠⎪
⎪ ∂⎛ ⎞⎪ + τ + = −⎜ ⎟⎨ ∂⎝ ⎠⎪
⎪ ⎛ ⎞ ⎛ ⎞∂ τ ∂′⎪ = − −⎜ ⎟ ⎜ ⎟∂ ∂⎪ ⎝ ⎠ ⎝ ⎠⎩

%

%

( )

( )

2 22 ( ) 2

2 2

1
0,   

2

1
1 ( ) ,

2

,
2

n

n

n
c c

c
D D

p J s
x

s J M c W
x

r rc p
W f

l x l x

 (74) 

where /c Dr l  is the ratio of correlation parameter cr  and diffusion 

length /D Dl D V= . Excluding s from (74), one can obtain the final sys-
tem of equations. This one yields  
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⎧ ⎛ ⎞ ⎛ ⎞τ ∂ ∂′⎪ + = −⎜ ⎟ ⎜ ⎟∂ ∂⎪ ⎝ ⎠ ⎝ ⎠⎨
⎪ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− + =⎜ ⎟ ⎜ ⎟⎪∂ ∂ τ τ ∂⎝ ⎠ ⎝ ⎠⎩

%

%

2 22 2 ( )

2 2

( )

,
2

2 2
( ) 1 .

n
c c

c
D D

n

r rp c
W f

l x l x

J
M c W p

x x x

 (75) 

Equations (75) represent an elliptic set of equations. This system al-
lows us to numerically solve Eqs (68)−(71) relatively the functions p  

and W  using the following algorithm. Taking initial data for concen-
tration 

0
0( ,0) ( )k kc x c x c= =  and diffusion flux 

0( ,0) 0 kJ x J= = , vari-
ables p  and W  are obtained from the system (75). Then, new data for 

the concentration and the flux are found from the system (73) for the 

new time level. These are used for obtaining p  and W  from Eqs (75). 

This procedure is iterated in time to compute concentrations and dif-
fusion fluxes in spinodal decomposition. 
 Note that the system (75) can be also used for solution of the Cahn 

and Hilliard’s parabolic equation for spinodal decomposition. This 

procedure has to assume the steady-state diffusion flux, i.e. the flux 

needs infinite time for its time changing. Therefore, let τ → ∞  in the 

second equation of Eqs (75). This excludes from the numerical proce-
dure the time dependence of the flux and the second order derivative of 

concentration with respect to time. In addition, the second equation in 

Eq. (73) has to be divided on τ  with the further taking the same limit 

τ → ∞ . This leads to equality 0s J t= ∂ ∂ =  that allows us to exclude 

the time dependence of flux from the suggested numeric algorithm. 
 Choosing a finite difference method and using approximation of the 

second order for coordinate x , elliptic system (75) can be tested 

against its computational stability. A linearized transfer-matrix 

( , )T k n
)

 is obtained for deviations cδ  and Jδ  from exact solutions of 

Eqs (75). This one yields  

 
( 1) ( )

( 1) ( )
( , ) ,

n n

n n

c c
T k n

J J

+

+

⎛ ⎞ ⎛ ⎞δ δ
=⎜ ⎟ ⎜ ⎟

δ δ⎝ ⎠ ⎝ ⎠
 (76) 

where  

  

( )( )

2 2

0 2

2 2

1 1 1
1 1

2 2 2
( , ) ,

1 1
1 1 1 1 3

2 4

ML k i k

T k n N

iMLk MLk

⎛ ⎞⎛ ⎞ ⎛ ⎞− τ + τ − τ + τ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎜ ⎟= ⎜ ⎟⎛ ⎞⎜ ⎟− τ + τ − τ + + τ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (77) 

where k is the wave vector, and factors 0N  and L  are obtained as  

 ( ) ( )1 12 2
0 1 2 4 1 2 ,N MLk

− −= + τ + τ + τ  
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and 
2( , ) ( / ) .cc c DL n k f r l k′′= +% %  The stability condition requires that, for 

given wave vector k, the eigenvalues for transport matrix (77) have to 

be not greater than unity. Qualitative dependence of modulus of eigen-
values for transfer-matrix ( , )T k n

)
 from the wave vector k is present in 

Fig. 5. This dependence is shown at different values of parameters of 

the time step τ  and relation 0 /c Dr lα =  between the correlation pa-
rameter cr  and diffusion length /D Dl D V= . One can see that numeri-
cal scheme is conditionally stable. The condition of stability is formed 

mainly by a largest possible value of wave vector and weakly depends 

on other parameters, particularly, from the time step τ . 
 Dynamics of spinodal decomposition is presented in Figs. 6 and 7 for 

the material and computational parameters summarized in Table 3. 

The dynamics is shown in spatial changing of concentration profiles 

for a given time step (Figs. 6, 7, a—d). After formation of quasi-
sinusoidal profile from an initially random distribution, this distribu-
tion becomes unstable in further separation due to up-hill diffusion 

between decomposing phases (Fig. 6, a—b). This unstable situation 

evolves much more faster for the system described by Cahn−Hilliard 

equation than for the local nonequilibrium system described by hyper-
bolic equation (Fig. 6, b—c). It occurs, generally, due to propagation of 

concentration disturbance with infinite diffusion speed in the 

Cahn−Hilliard’s system. Hyperbolic system has a delay described by 

the second time derivative in Eqs (32) and (34). As a result, concentra-
tion disturbance in the hyperbolic system propagates with the finite 

speed and the instability realizes with the delay relatively to the 

Cahn−Hilliard’s system. 

 

Fig. 5. Typical dependence of modulus of eigenvalues for transfer-matrix 

( , )T k n
)

 on dimensionless wave vector k with the scale of 2 Dlπ . Region of com-
putational stability lies below unity for the eigenvalues of transfer matrix. 
Dependence is shown at: (a) different values 0 /c Dr lα =  that is the ratio of cor-
relation parameter cr  and diffusion length /D Dl D V= , and (b) different τ . 
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 Finally, the new stable (or metastable) profile is formed which is the 

same for both parabolic Cahn−Hilliard’s system and hyperbolic system. 

 

Fig. 6. Dynamics of spinodal decomposition of a binary liquid in 1D case with 

the constant mobility 0 constM M= = : (a) metastable state; (b) beginning of 

the transition from unstable to metastable state; (c) finishing of the transition 

from unstable to metastable state; (d) new metastable state. The first metasta-
ble state (a) and the following metastable state (d) are equivalent for both clas-
sic and modified Cahn−Hilliard equations. The dynamics of transition between 

two metastable states is much more faster for classic Cahn−Hilliard equation. 

 

Fig. 7. Dynamics of spinodal decomposition of a binary liquid in 1D case with 

the concentration dependence of mobility 0 (1 )M M c c= − : (a) metastable 

state; (b) beginning of the transition from unstable to metastable state; (c) 

transient period for the transition from unstable to metastable state; (d) new 

metastable state. The first metastable state (a) and the following metastable 

state (d) are equivalent for both classic and modified Cahn−Hilliard equa-
tions. The dynamics of transition between two metastable states is much more 

faster for classic Cahn−Hilliard equation. 
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 The described dynamical scenario qualitatively does not depend on 

the atomic mobility of decomposing phases. Comparative dynamics 

shown in Figs. 6 and 7 for constant mobility and concentration depend-
ent mobility, respectively, demonstrates that the both dynamics quali-
tatively remain the same. The only difference in dynamics shown in 

Figs. 6 and 7 is that the transition from the one metastable state to the 

next metastable state proceeds during various periods of time. Conse-
quently, the Cahn and Hilliard model predicts much more faster dy-
namics of spinodal decomposition, which can be resulted in much more 

diffuse boundaries between two separated phases. 

3.2. 3D Modelling 

For 3D numeric solution of Eqs (68)−(71), a cube with linear size N is 

taken. The cube is approximated by the numerical grid with equal dis-
tances xΔ  between nodes along Cartesian axes. In such a case, coordi-
nates of the nodes are given as x i x= Δ , y i x= Δ , and z i x= Δ , where 

1,...,i N= , 1,...,j N= , and 1,...,k N= , respectively. 
 A random distribution around average concentration 0c  within the 

cube is accepted for initial time step 0n = . Then for every time step 

t n= τ , the following explicit numerical scheme is used:  

0 (1 )(1 2 )
2

n
n n n
ijk ijk ijk

ijk

fF
c c c

c

δ⎛ ⎞ = − − − +⎜ ⎟δ⎝ ⎠
 

TABLE 3. Parameters for a binary system used in numeric computations. 

Parameter 
Value and unit for 

1D modelling 
Value and unit for 

3D modelling 

Initial concentration, 0c  0.5 atomic fraction 0.5 atomic fraction 

Height of the free energy, 0f  0.5 0.5 

Time for diffusion relaxation, Dτ  111.5 10−⋅  s 
111.5 10−⋅  s 

Diffusion coefficient, D  95.0 10−⋅  m
2/s 95.0 10−⋅  m

2/s 

Bulk diffusion speed, 
1/2( / )D DV D= τ 18.26 m/s 18.26 m/s 

Spatial diffusion length, /D Dl D V= 90.27 10−⋅  m 90.27 10−⋅  m 

Ratio /c Dr l  0.90 0.29 

Quantity of computational nodes, N 80 3500  

Dimensionless spatial step, xΔ  0.56 0.88 

Dimensionless time step, τ  25.13 10−⋅  35.0 10−⋅  
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 (80) 

 A set of hyperbolic equations (78)—(80) allows to model decomposi-
tion with conserved function of concentration c. It has been resolved 

numerically with material and computational parameters summarized 

in Table 3. To test conservation of c, average concentration of a whole 

 

Fig. 8. 3D modelling of spinodal decomposition in undercooled binary liquid: 
(a) 0t = , (b) 150t = τ , (c) 

31.5 10t = ⋅ τ , (d) 
41.5 10t = ⋅ τ . For every time mo-

ment, isoconcentration patterns within the cube with size of 
3500  computa-

tional nodes is shown. 



 DYNAMICS IN SPINODAL DECOMPOSITION OF A BINARY SYSTEM 59 

computational domain has been compared with the initial value c0. An 

error of computations 0 0| | / 100%c c c− ⋅  was found not higher than 

3.8%. That confirms correctness of the present system (78)—(80) to 

model the spinodal decomposition with conserved concentration c 

within computational domain. 
 Figure 8 shows evolution of concentration inside the cube. It is seen 

that initially random parts of distribution with equal concentration 

(Fig. 8, a) create isoconcentration surface (Fig. 8, b—d] during decom-
position. Figure 9 presents snapshots of patterns evolving in local non-
equilibrium spinodal decomposition. This sequence exhibits hyperbolic 

evolution with a sharp boundary between two types of decomposed liq-
uid especially at the first moments of decomposition (see Fig. 9, b). The 

sharp boundary between two liquids follows from the fact that descrip-
tion of diffusion in system (78)—(80) is given by hyperbolic type of 

 

Fig. 9. Evolution of spinodal decomposition: (a) 0t = , (b) 50t = τ , (c) 
310t = τ , 

(d) 
43 10t = ⋅ τ . For every time moment, cross section for a cube with the size of 

3500  computational nodes is shown. 
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equation (69). Together with conservation law (70), Eq. (69) predicts 

with a finite speed and, as a consequence, with sharp diffusion fronts 

between two separating phases.  
 To compare patterns originating in spinodal decomposition, results 

for both hyperbolic evolution and parabolic evolution were extracted 

from solution of Eqs (78)—(80). Predictions of complete system (78)—
(80) were taken as for hyperbolic evolution. Predictions of the system 

(78)—(80) without relaxation of the solute diffusion flux, i.e., with the 

Fick’s diffusion flux  

 ,
F

c

δ⎛ ⎞= ∇ ⎜ ⎟δ⎝ ⎠
J  (81) 

and its numerical approximation  
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δ δ⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟Δ δ δ⎝ ⎠ ⎝ ⎠

δ δ δ δ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟δ δ δ δ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (82) 

instead of Eqs (69) and (79), respectively, were taken as for para-
bolic evolution. 
 Results of modelling for patterns in both evolutions are shown in 

Fig. 10. Evolution of patterns has been spied upon the complete sepa-

 

Fig. 10. Comparison of patterns in spinodal decomposition described by (a—d) 
hyperbolic equation and (e—h) parabolic equation. Here, (a, e) 10t = τ , (b, f) 

40t = τ , (c, g) 
22 10t = ⋅ τ , (d, h) 

52 10t = ⋅ τ . For every time moment, patterns 

are shown for a small cube of 
350  computational nodes extracted from central 

part of the cube with the size of 3500 computational nodes.
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ration of liquids (see Fig. 10, d and h). It is seen that the boundaries 

between two demixing liquid phases are sharper for hyperbolic evolu-
tion than for the parabolic evolution. This feature of the hyperbolic 

evolution is a result of solute diffusion with the finite speed that leads 

to instability realized with the delay relatively to the Cahn—Hilliard’s 

system (see comparative dynamics in Figs. 6 and 7). 

4. STOCHASTIC MODELS OF SPINODAL DECOMPOSITION 

In this Section, we consider to above models for spinodal decomposi-
tion and illustrate in what a manner concentration fluctuations, con-
sidered as internal noise, obeying fluctuation—dissipation relation can 

affect on the system dynamics and stationary states. 
 It is known that contrary to the naive predictions, assuming that 

fluctuations lead to disordering effects, phenomena such as noise-
induced transitions in zero-dimensional systems [60—64] (when a sto-
chastic variable x is a function of the time t only, ( )x x t= ), stochastic 

resonance [65, 66], noise-induced ordered and disordered phase transi-
tions in extended systems [67—70] (when ( , )x x t= r ), noise-induced pat-
tern formation processes [71, 72], noise-induced effects in excitable sys-
tems [73], and a lot of others are manifestations of the constructive role 

of fluctuating environment. An increasing interest in the noise-induced 

phenomena in extended systems results in the discovery of new nonequi-
librium universality classes [74, 75] and new types of self-organization 

processes such as entropy driven phase transitions [76, 77]. 
 In most problems of noise-induced phenomena in extended systems 

external fluctuating sources are considered; their primary role in self-
organizational processes is stated [67, 78]. Recently, a new type of en-
tropy driven phase transitions was discovered [76]. Within this type of 

transitions, it was shown that internal fluctuations with intensity re-
lated to a field-dependent kinetic coefficient (mobility) play a principle 

role in ordering dynamics. Particularly, it was found that the internal 
multiplicative noise leads to the effective entropy dependence on the 

stochastic quantity in a functional form but does not change the corre-
sponding free energy functional. As a result, noise-induced effects can 

be understood with a help of the entropy mechanism, which follows 

from the thermodynamics. Considering parabolic and hyperbolic mod-
els for spinodal decomposition within the frame of the linear stability 

analysis and the mean field theory we compare behaviour of above two 

models. 
 The aim of this Section is to perform a somewhat detailed study of 

entropy driven phase transitions mechanisms in phase separation 

processes. We analyze early and late stages of evolution numerically. 

For the stationary picture, we extend the mean field approach to the 

systems with the field dependent mobility and investigate mechanisms 
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of entropy driven phase transitions in binary stochastic systems. We 

generalize the well-known results for early stages of evolution, study 

late stages and consider re-entrant ordering effects in a stationary 

case. Our analytical results are compared with computer simulations. 
 The outline of this Section is the following. In Subsection 4.1, we 

introduce the general stochastic system with conserved dynamics and 

obtain the corresponding Fokker−Planck equation that can be used in 

the mean field analysis for both parabolic and hyperbolic models. Con-
sidering parabolic model, we discuss effects of the internal multiplica-
tive noise influence at early and late stages of spinodal decomposition 

and consider phase transitions by means of the mean field theory. In 

Subsection 4.1.4, we discuss effect of a combined effect of both inter-
nal and external stochastic sources. In Subsection 4.2, we study sto-
chasticity of the hyperbolic transport. Subsection 4.3 is devoted to 

study of stochastic hyperbolic model for spinodal decomposition. 

4.1. Stochastic Parabolic Model for Spinodal Decomposition 

In this subsection, we investigate an influence of the conserved-field 

(concentration) dependent mobility and the corresponding internal 
noise on properties of a phase separation scenario in the parabolic model. 
 Formally, in a case of a binary system with concentrations Aρ  and 

Bρ  of the components A and B, respectively, the density difference 

A Bx = ρ − ρ  can be introduced. In a phase separation scenario, the 

quantity x obeys a conservation law ( , )d constx t =∫ r r . In our study, we 

use the field x to describe the system under consideration and investi-
gate a corresponding dynamics and a stationary picture. 
 To define a principle model let us start with a continuity equation 

for the field ( , )x tr  in a d-dimensional space in the form  

 ,x
t

∂ = −∇ ⋅
∂

J  (83) 

where J is the flux. The deterministic part of the flux is of the form  

 det

x
M

x

δ= − ∇
δ

J
[ ]F

. (84) 

Here, M is the mobility, the Helmholtz coarse-grained free energy 

functional F  is of the standard (Ginzburg−Landau or Cahn−Hilliard) 

form applicable for a local equilibrium system  

 2[ ] ( ) ( ) ,
2

D
x dV f x x

⎧ ⎫= + ∇⎨ ⎬
⎩ ⎭∫F  (85) 
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where D is the spatial coupling intensity related to the correlation ra-
dius in the form 

2
cD r=  with 

2 2 2
0( / ( ) ) |c xr x ∇ == δ δ ∇F ; ( )f x  is the free 

energy density of the bulk. The mobility we assume in a functional 
form, i.e. ( )M M x= . 
 To investigate the influence of the flux fluctuations, let us intro-
duce fluctuation source ζ  into the right hand side of Eq. (84). It yields 

an expression for the flux in the form as follows: 

 det ( ; , ).x t= + ζJ J r  (86) 

Formally, the stochastic part ζ  is assumed to be Gaussian, and gener-
ally, it can be a function of the field x. Assuming the x-dependent mo-
bility ( )M M x=  and using fluctuation dissipation relation, one gets 

the following definition for the averages  

 2( ; , ) 0, ( ; , ) ( ; , ) 2 ( ) ( ; ).x t x t x t M x C t t′ ′ ′ ′〈ζ 〉 = 〈ζ ζ 〉 = σ − −r r r r r  (87) 

In the simplest case, we assume the correlation function C in the form 

of ( ; ) ( ) ( )C t t t t′ ′ ′ ′− − → δ − δ −r r r r , which allows to consider the white 

noise in space and time. Here, we note that the fluctuation dissipation 

relation holds that yields an interpretation of the noise intensity 
2σ  as 

an effective temperature of the bath. 
 In further study of stochastic dynamics, we consider a general case 

when control parameters of the system and the noise intensity 
2σ  are 

independent quantities. 
 Using conditions corresponding to an equilibrium situation, one 

gets the flux J as follows [ ] / ( ) ( , )M x x g x t= − ∇δ δ + ξJ rF , where 

( ) ( )g x M x= , ( , ) 0t〈ξ 〉 =r , 
2( , ) ( , ) 2 ( ) ( )t t t t′ ′ ′ ′〈ξ ξ 〉 = σ δ − δ −r r r r . Sub-

stituting the generalized flux into Eq. (83), we get the stochastic con-
tinuity equation in the form  

 
[ ]

( ) ( ) ( , ).
x

x M x g x t
t x

∂ δ⎛ ⎞= ∇ ⋅ ∇ + ∇ ξ⎜ ⎟∂ δ⎝ ⎠
r

F
 (88) 

 To study statistical properties of the system one needs to find the 

probability density ([ ], )x t=P P . To this end, we represent the system 

on a regular d-dimension lattice with a mesh size l . Then, the partial 
differential equation (88) is reduced to a set of usual differential equa-
tions written for an every cell i  on a grid in the form  

 ( ) ( ) ( ) ( ),i
L ij j R jl L ij j j

l

dx F
M g t

dt x

∂= ∇ ∇ + ∇ ξ
∂

 (89) 

where index i  labels cells: 1, , di N= K ; the discrete left and right op-
erators are introduced ( 2d = ) as follows: 
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, 1, 1, ,

, 1 , , 12

1 1
( ) ( ), ( ) ( ),

1
( ) ( ) , ( ) ( ) ( 2 ),

L ij i j i j R ij i j i j

L ij R ji L ij R jl il i l i l i l

− +

+ −

∇ = δ − δ ∇ = δ − δ

∇ = − ∇ ∇ ∇ = Δ = δ − δ + δ

l l

l

 (90) 

where ijδ  is the Kronecker symbol. For stochastic sources, the discrete 

correlator is of the form 
2 2( ) ( ) 2 ( )i j ijt t t t− ′〈ξ ξ 〉 = σ δ δ −l . In the following 

analysis, we use the Stratonovich interpretation of the Langevin equa-
tions (89). 
 Next, to obtain above distribution let us introduce standard defini-
tions  

 
=1

([ ], ) ( ( ) ) ( ) ,
dN

i i
i

x t x t x t= 〈 δ − 〉 ≡ 〈ρ 〉∏P  (91) 

where K  and 〈 〉K  are averages over initial conditions and noise, re-
spectively. To obtain the corresponding Fokker−Planck equation, we 

use the standard technique and exploit the stochastic Liouville equa-
tion  

 ( ).i
i i

x
t x

∂ ∂ρ = − ρ
∂ ∂∑ &  (92) 

Inserting the expression for the time derivative from Eq. (89) and av-
eraging over noise, we get  

  ( ) ( ) ( ) ( ) .L ij j R jl L ij j j
i iji l i

F
M g t

t x x x

⎛ ⎞∂ ∂ ∂ ∂
〈ρ〉 = − ∇ ∇ 〈ρ〉 − ∇ 〈 ξ ρ〉⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∑ ∑  (93) 

The correlator in the second term can be calculated by means of No-
vikov’s theorem that gives [79]  

 
δ ρ

′ ′〈 ξ ρ〉 = σ δ δ − 〈 〉
′δξ∑ ∫2

0

( )
( ) 2 ( ) ,

( )

t j
j j jk

k k

g t
g t dt t t

t
 (94) 

where for the last multiplier one has  

 
( ) ( )

( ).
( ) ( )

j l
j

k l k t t

g t x t
g t

t x t ′=

δ ρ δ∂= − ρ
′ ′δξ ∂ δξ

 (95) 

In a formal solution of the Langevin equation, the response function 

takes the form  

 
( )

( )
( )

l
L lk k

k t t

x t
g

t ′=

δ
= ∇

′δξ
. (96) 
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 After some algebra, we obtain the Fokker−Planck equation for the 

total distribution P  in the discrete space  

2( ) ( ) ( ) ( ) ,L ij j R jl L ij j R ji i
i iji l i j

F
M g g

t x x x x

⎛ ⎞∂ ∂ ∂ ∂ ∂= − ∇ ∇ − σ ∇ ∇⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
∑ ∑P P P  (97) 

where relations between left and right gradient operators are used. The 

one-point probability density is defined as follows: 

( ) ([ ], )i mm i
P t x t dx

≠
= ∏∫ P . 

The above equation can be rewritten in the standard form (in our case, 

it has only formal form) for the functional ({ ( )}, )x t= rP P  in the con-
tinuum space as follows:  

 

2

2
2

2

( ) ( ) 2 ( )

( ) .
( )

M
d M

t x x x

d M
x

⎡ ⎤∂ δ δ σ δ⎛ ⎞= − ∇ ∇ − ∇ ∇ −⎢ ⎥⎜ ⎟∂ δ δ δ⎝ ⎠⎣ ⎦
δ−σ ∇ ∇

δ

∫

∫

r
r r r

r
r

F
P P

P

 (98) 

The term proportional to 
2σ  in the first addendum is the noise-induced 

drift. The derived Fokker−Planck equation allows us to write down the 

corresponding Langevin equation  

 
2

( , ) ( , ),
2 W

M
x t M g t

t x x

∂ δ σ δ⎛ ⎞= ∇ ∇ − ∇ ∇ + ∇ ξ⎜ ⎟∂ δ δ⎝ ⎠
r r

F
 (99) 

with a process Wξ , which has a strong mathematical definition through 

the Wiener process ( )W t : ( ) ( ) /W t dW t dtξ = , 
2( ) :dW dt  [60]. 

 The stationary solution of the Fokker−Planck equation takes the form  

 
2

2

1
[ ] exp [ ] ln ( ) .

2
x x d M x

⎧ ⎫⎛ ⎞σ⎪ ⎪∝ − +⎨ ⎬⎜ ⎟σ⎪ ⎪⎝ ⎠⎩ ⎭
∫ rP F  (100) 

Exploiting standard thermodynamic definition of the effective inter-
nal energy eff ef effT= +U F S  and assuming a quasi-Gibbs form for the 

stationary distribution, we can identify the effective entropy 

eff (1 / 2) ln ( )d M x= ∫ rS  

and the effective temperature 
2

efT = σ . 
 It is principally important that the stationary distribution is exact 

and is described not only by the initial functional [ ]xF . Here, the en-
tropy contribution modifies the form of the probability density. De-
spite, we consider the internal multiplicative noise, its action leads to 
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the entropy variability. Thus, controlling the noise intensity or parame-
ters in the mobility ( )M x  we can govern an ordering process. Therefore, 

the system studied below is considered as a nonequilibrium one. The 

same situation is observed in the entropy driven phase transitions in 

systems with nonconserved dynamics [76, 80−82], where the stationary 

distribution is obtained exactly and phase transitions picture is con-
trolled by the effective entropy variations. Below, we relate the entropy 

driven phase transitions formalism developed for systems with noncon-
served dynamics to the systems with conserved dynamics. The main at-
tention will be paid on effects where the entropy variability is principle. 
 Using Langevin or Fokker−Planck equation, one can derive equation 

for the first statistical moment directly:  

 
2

( , ) .
( ) 2 ( )

M
x t M

t x x

∂ δ σ δ
〈 〉 = ∇〈 ∇ 〉 − ∇〈∇ 〉

∂ δ δ
r

r r

F
 (101) 

This equation can be used to analyze the influence of the internal 
multiplicative noise on the stability of the null phase in the linear ap-
proximation. 
 Since the dynamics is conserved,  

V
( , ) constx t d =∫ r r , 

V  is the system volume), so dynamics of the phase separation can be 

considered with a help of the Fourier transform of correlation function  

2( , ) (1 / ) ( , ) ( , ) ( , )G t V x t x t d x t′ ′ ′= 〈 + 〉 − 〈 〉∫r r r r r r . 

The corresponding structure function is given as 

V
( , ) ( , ) iS t G t e d= ∫ krk r r . 

In practice, it is convenient to use a spherical average of the correla-
tion and structure functions, which are as follows:  

( , ) ( , )
r

g r t G t d
Ω

= Ω∫ r ,   ( , ) ( , )
k

S k t S t d
Ω

= Ω∫ k . 

Here, rΩ  and kΩ  are spherical shells of radius r  and k , respectively. 

The above values allow us to extract a mean characteristic size of do-
mains at time t, ( )R t , using scaling relations: ( , ) ( / ( ))g r t r R t= ϕ , 

( , ) ( ) ( ( ))dS k t R t kR t= ϕ . The expected domains growth law is ( ) zR t t∝ , 

where z  is the domain-growth exponent. 
The Model. In our consideration, we use a model for a binary system, 
which is described by the free-energy density, ( )f x . Single-phase equi-
librium ( )f x  has a stable single-well structure. In a two-phase region, 
( )f x  is of a double-well structure; the corresponding model has the form  
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 2 4( ) 2 4,f x x x= − ε +  (102) 

where ε  is a dimensionless phenomenological constant, playing the 

role of a control parameter. 
 The mobility is used in the functional form  

 2 1( ) (1 ) , 0.M x x −= + α α ≥  (103) 

Variations in the parameter α  allow us to consider additive ( 0α = ) or 

multiplicative ( 0α ≠ ) noises, separately (the difference in such a clas-
sification is reduced to the following: if the noise term appears in the 

evolution equation with a constant multiplier, constg = , then the 

noise is additive, else, ( )g g x= , it is multiplicative). The model func-
tion (103) assumes that fluctuations are large in the case where 0x = , 

whereas fluctuations are small in cases where 0x ≠ . Formally, assum-
ing α  to be small, an approximate definition is 

2( ) 1M x x≈ − α . As 

previous studies show, the quantity α  can be expressed through the 

relation between bulk bD  and surface sD  diffusion constants, i.e. 
1 /b sD Dα ≈ −  (see Ref. [83]). Further, we are looking for changes in 

system behaviour when α  ranges. 
 In such kind of stochastic models, a possible scenario of phase sepa-
ration depends on the initial conditions: at ( ,0) 0x〈 〉 =r , the system 

evolves by spinodal decomposition scenario (see Fig. 11, a), whereas at 

( ,0) 0x〈 〉 ≠r , a nucleation process is realized. (Fig. 11, b).  

 
a 

 
b 

Fig. 11. Typical spatial patterns: (a) spinodal decomposition ( ,0) 0,x〈 〉 =r  (b) 
nucleation ( ,0) 0.2x〈 〉 =r . Other parameters are as follows: 120 120,N N× = ×  

4,D =  1,ε = 0.5,α =  
2 0.2.σ =  
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4.1.1. An Early Stage of Evolution 

At the first, we investigate the internal multiplicative noise influence 

on instability of the homogeneous phase 0x〈 〉 = . Using Fourier trans-
formation for the scalar field  

( ) (2 ) ( , )d ix t d x t e− −= π ∫ kr
k r r  

in d-dimensional space, in linear approximation one gets 

 ( )2 2 2 .
d x

k Dk x
dt

〈 〉
= − − ε + ασ 〈 〉k

k  (104) 

It is principally important that the noise contribution denoted as 
2 xασ 〈 〉k  stabilizes the homogeneous state. The same result was ob-

served in the case of entropy-driven phase transitions with noncon-
served dynamics [76, 81]: as it follows, one can await the similar be-
haviour of the stochastic systems with conserved dynamics where the 

entropy driven phase transition formalism can be generalized. 
 More information of the system behaviour provides the knowledge 

of the structure function ( , ) ( ) ( )S t x t x t−= 〈 〉k kk . Following the standard 

approach, a linear evolution equation for the spherically averaged 

structure function can be derived in the form [84]  

2 2 2 2 2 2 2( , ) 1
( ) ( , ) 2 2 ( , ).

(2 )d

dS k t
k Dk S k t k k d S q t

dt
= − − ε + ασ + σ − ασ

π ∫ q  (105) 

It is seen at 0α =  that corresponds to the additive noise case, one ar-
rives at the well-known Cahn−Hilliard−Cook equation for the structure 

function [12, 59]. From exponential solutions of Eqs (104, 105), one 

can see that only modes with 
2( ) /ck k D< = ε − ασ  are unstable and 

grow at early stages of evolution. With an increase in α  or 
2σ , the size 

of the unstable modes domain ck k<  decreases. Modes with ck k>  re-
main stable during the linear regime. Note that unstable modes cannot 

be realized at condition 
2ε < ασ . As it follows, the domain growth 

should be different for additive and multiplicative noise.  
 In Figure 12, we present solutions of the evolution equation (105) at 

different values of the parameter α . It can be seen that an increase in 

α  leads to a shift of the peak position toward smaller values of k . The 

peak of ( )S k  is less pronounced in the multiplicative noise case than in 

the case of the additive noise. It follows that, if the multiplicative noise 

is considered, then the dynamic is slowed. A decrease in the peak height 

means that an interface is more diffuse in the case of multiplicative 

noise (see insertions in Fig. 12). We compare analytical results with 

computer simulations at the same time t on the two-dimensional lattice. 
In the insertions, a typical patterns and images of spherically averaged 
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structure functions are shown. It is seen that in the multiplicative noise 

case the pattern has more diffuse interface and the resonance ring in 

S(k)-dependence is less pronounced than at the additive noise. 

4.1.2. A Late Stage 

To get more information about internal multiplicative noise influence, 

we simulate the system behaviour and study influence of the parameter 

α  at the late stage of the evolution. All simulations were done in two-
dimensional lattice with periodic boundary conditions with 120N = . A 

criterion for the phase separation in the model under consideration is 

the growth of the averaged second moment of x in the real space. We 

use the standard definition of the corresponding order parameter 

 
2

2 2
2

=1

( ) ( ) .
N

i
i

M t N x t−= 〈 〉∑  (106) 

An alternative formula is 2( ) ( )kk
M t S t= ∑ . In phase separation scenario 

during the long time evolution, the quantity 2( )M t  grows to the sta-

tionary value 2M  when the system tends to the nonzero stationary state. 

 

Fig. 12. Evolution of the structure function at early stage ( 10t = ) at 4D = , 
1ε = , 

2 0.3σ = . Different values of the parameter α  are used to compare in-
fluence of additive 0α =  and multiplicative 0.9α =  noises (solid and dashed 

lines, respectively). Insertion shows typical patterns and corresponded images 

of spherically averaged structure functions at the same time obtained from 

numerical solution of Eq. (99) at 3 0x = with the initial condition ( ,0) 0x〈 〉 =r . 
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Figure 13 displays the evolution of the order parameter 2M  at different 

values of the parameter α  and stationary values 2M  versus α . It is seen 

that an increase in α  delays slightly the evolution of 2M  (Fig. 13, a) at 

small times and suppresses the stationary values (see Fig. 13, b).  
 Despite the fact that the quantity 2M  represents an integral effect, 

more information about the system behaviour can be found in the 

structure function ( )S k . A convenient quantity is the spherically av-
eraged structure function defined on a circle as follows:  

 
a 

 
b 

Fig. 13. Order parameter evolution (a) and its stationary values (b) at dif-
ferent values of α  and 1.0ε = , 4D = , 2 0.2σ = .
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1

( , ) ( , ).
k k kk

S k t S t
N ≤ ≤ +Δ

= ∑
k

k  (107) 

In Figure 14, we display the evolution of the structure function for two 

values of the parameter α  at fixed noise intensity 
2σ . Comparing Fig. 

14, a, b, one can see that, in the case under consideration, the peaks of 

the structure function are less pronounced when α  increases that cor-
responds to the case of the field-dependent mobility case studied in 

Ref. [85] and relates to the linear stability analysis. As follows from 

Figs. 14, a, b, the positions of the peaks are the same with an increase 

in α  at equal times. It follows from the linear stability analysis and 

corresponds to the fact that in the case of multiplicative noise the dy-
namics is slowed [85]. This result is different from the deterministic 

case where at large α  peaks are located at higher values of k . The typi-
cal behaviour of the Fourier images in Fig. 14, c, shows the diffuse in-
terface between two phases and change in the peaks position. As Figure 

 
a                                                 b 

 
c 

Fig. 14. Evolution of the structure function at ε = 1.0, D = 4.0, σ2 = 0.2: 
(a) α = 0.01, (b) α = 0.85. The times represented are t = 250, t = 1000, 
t = 3000. (c) Fourier images of structure function evolution at α = 0.85 
and times t = 250, t = 1000, t = 3000.
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15 shows, the change in peaks height means that with an increase in α  

the interface becomes more diffuse. 
 To investigate the domain growth dynamics we use the standard 

formulas for a relevant length:  

 
k k

R t k k S k t kdk S k t dk−= 〈 〉 〈 〉 = ∫ ∫max max1

0 0
( ) , ( , ) ( , ) . (108) 

The power law behaviour of the function ( ) zR t t∝  is verified at differ-
ent values of the parameter α , where the domain growth exponent de-
pends on α , i.e. ( )z z= α  (see Fig. 16). It is seen that, in the case of ad-
ditive noise ( 0α = ), the exponent 1 / 3z ∝ , whereas at 1.0α = , we ob-
tain 1 / 4z ∝ . Therefore, with an increase in α  a crossover of dynami-
cal regimes is observed. Our results are in good correspondence with 

deterministic and stochastic approaches, which indicate that an in-
crease in the parameter α  delays the dynamics [86−88]. 

4.1.3. Stationary Case 

To investigate the steady states, we can use an extension of the mean 

field theory developed for the systems with conserved dynamics [37]. 

In the framework of this theory, one can use thermodynamic supposi-
tions for the deterministic dynamics and after apply it to the stochastic 

one. 

 

Fig. 15. Structure function behaviour at different values of the parameter 
α  at 1.0ε = , 2 0.2σ = , 4.0D = , 3000t = .
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 At first, let us define transition and critical points [89]. Considering 

the deterministic case, we use the model tx M x∂ = ∇ ⋅ ∇ δ δF , where 

the restriction  

0 ( , )
V

x d x t= ∫ r r  

is taken into account, 0x  is fixed by the initial conditions. For such a 

system, the transition point is 0( )T xε : at 0( )T xε < ε  the homogeneous 

state 0x  is stable; at 0( )T xε > ε  the system separates in bulk phases, 1x  

 
a 

 
b 

Fig. 16. Power law for domains size growth: (a) log−log plot of the evolu-
tion of ( )R t  at different values of the parameter α  (insertion shows uni-
versal behaviour of the function ( )R t  at large times indicated in the rec-
tangle); (b) dependence of the power law exponent z  versus parameter α . 
Other parameters are as follows: 1.0ε = , 4.0D = , 2 0.2σ = . 
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and 2x , with 0x x〈 〉 = . The transition point coincides with critical one 

for 0 0x =  only, i.e. (0)T cε = ε . 
 The corresponding steady state solutions are given as solutions of 

the equation 0M x∇ ⋅ ∇ δ δ =F . If no flux condition is applied, then 

stationary solutions can be obtained from the equation 
2 0x∇ δ δ =F , 

due to the mobility M  does not affect on the number and extremes po-
sitions of the functional F ; the mobility leads to the change in the dy-
namics of the phase transition only. Hence, the bounded solution is 

x hδ δ =F , where h  is a constant effective field of the system, in equi-
librium systems h  is a chemical potential. In the homogeneous case, 

the value h  does depend on the initial conditions 0x . Above the transi-
tion point, the steady state is not globally homogeneous, here the sys-
tem separates into two bulk phases with values 1x  and 2x . The fraction 

u  of the system can be defined by the lever rule: 1 2 0(1 )ux u x x+ − = . In 

the case of the symmetric form of the free energy functional where two 

phases with 1 2x x= −  are realized, we get 0h =  [37]. Hence, if the field 

h  becomes trivial, then the transition point can be defined. 
 Using the above assumptions, let us move to the stochastic case, fol-
lowing prescription [37]. For the one-point probability density, 

( ) ([ ], )i mm i
P t x t dx

≠
= ∏∫ P , 

the standard definition of the nearest-neighbours average 

( )
([ ], ) 2 ( )j m ij nn i m i
x t x dx d x P t

∈ ≠
= 〈 〉∑ ∏∫ P  

can be applied. It allows to rewrite Eq. (125) in a more useful form  

 ( ) ( ),i ij j i
ji

P t M P t
t x

∂ ∂= − Δ 〈 〉
∂ ∂ ∑ %  (109) 

where  

 
2

2 .
2j

j j j

F M
M M M

x x x

∂ σ ∂ ∂= − + σ
∂ ∂ ∂

%  (110) 

With no flux condition, the average jM〈 〉%
 satisfies the equation  

 ( ) 0.ij j s i
j

M P xΔ 〈 〉 =∑ %  (111) 

Taking i j= , dropping subscripts and using results of the determinis-
tic analysis with M h〈 〉 =% , we obtain the mean-field stationary equa-
tion  

   
2

2( ) ( ) 2 ( ) ( ),
2s s

V M
hP x M x dD x x M P x

x x x

⎛ ⎞∂ σ ∂ ∂⎡ ⎤= − 〈 〉 − − + σ⎜ ⎟⎢ ⎥∂ ∂ ∂⎣ ⎦⎝ ⎠
 (112) 
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where we have used mean-field approximation of the Laplacian  

 ( )
( )

2 2 ( ),ij j nn i i
j nn i

x x dx d x x
⎛ ⎞

Δ ≡ − → 〈 〉 −⎜ ⎟
⎝ ⎠

∑ ∑  (113) 

the mean-field value x〈 〉  should be defined self-consistently. A solu-
tion of Eq. (112) takes the form  

 

2
2

2

1
( , , ) exp ( ) ( )

2

ln ( ) .
2 ( )

s

D
P x x h N f x x x

dx
M x h

M x

′⎛ ⎡〈 〉 = − + 〈 〉 − +⎜ ⎢σ ⎣⎝
⎞′ ⎤σ+ − ⎟⎥ ⎟′ ⎦ ⎠

∫
 (114) 

where 2D dD′ = , next we drop the prime. 
 In order to determine the unknown quantities h  and x〈 〉 , we re-
call that considered mean field approach is local and expresses sP  of 
a field at a given site of the lattice as a function of the field h  and 
of the mean field 〉〈x  in a neighbourhood of the given cell. 
 In the homogeneous case (below the threshold), the mean field is the 

same everywhere and equals the initial value, i.e. 0x x〈 〉 = . Hence, at 

the fixed mean-field value, solving the self-consistency equation,  

 sx xP x x h dx〈 〉 = 〈 〉∫ ( , , ) , (115) 

we obtain the constant effective field h . Above the threshold, the 
system is separated into two phases with equality 1 2x x〈 〉 = −〈 〉 , and 
h  must be the same for these two phases and must be zero. Hence, 
above the threshold only x〈 〉  should be defined by solving the self-
consistency equation with ( , ,0)sP x x〈 〉 . 
 The values of the constant effective field h  are obtained as solu-
tions of the self-consistency equation with initial concentration 

0 0.2x =  and shown in Fig. 17. As seen from Fig. 17, a, the field h  
decreases monotonically with an increase in the control parameter 
ε . If h  becomes trivial, we get the transition point Tε . After this 
point, 0h = , and the mean-field value x〈 〉  can be calculated self-
consistently. It is clearly seen that the internal multiplicative noise 

shifts the transition point toward negative values of the control pa-
rameter ε . With an increase in D , the same circumstance is observed. 
The last effect is well defined: an increase in the correlation scale cr  or 

spatial coupling intensity D  induces the ordering behaviour in the 

system. The former is the combined effect of the nonlinearity of the 

system, multiplicative character of the noise and the spatial coupling.  
 The noise induced effects are well seen in dependence 

2( )h σ , shown 

in Fig. 17, b. Here, at positive values of the control parameter ε  (solid 
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line), the effective field h  increases from the zero value at 
2 2

Tσ > σ . 
Here one has a stable homogeneous phase 0x x〈 〉 ≠ . In the case of nega-
tive values of the control parameter (dashed line), the constant effec-
tive field h  becomes zero inside the domain of the noise intensities 

2 2 2
1 2[ , ]T Tσ ∈ σ σ . The value h  decreases till the first threshold 

2
1Tσ , 

above the second one 
2
2Tσ  it increases monotonically. From the formal 

viewpoint, the corresponding mean field value x〈 〉  obtained as a solu-
tion of the self-consistency equation (115) should be nontrivial inside 

the domain 
2 2 2

1 2[ , ]T Tσ ∈ σ σ  where the phase separation with 1 2x x〈 〉 = −〈 〉  

occurs. 
 Let us discuss the mean field x〈 〉  behaviour. Here, we solve the self-
consistency equation, setting 0h = . As Figure 18, a, shows the mean 

field value changes, its value critically from zero if the parameter ε  

increases. The critical point cε  is defined as a bifurcation point when 

 
a 

 
b 

Fig. 17. Constant effective field h  versus control parameter ε  (a) and 
noise intensity (b) at fixed initial value 0 0.2x = . Other parameters are 
shown in legends. 
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nontrivial values 1 2x x〈 〉 = −〈 〉  appear. The transition point Tε  corre-
sponds to the case when 0x x〈 〉 = . With an increase in both the noise 

intensity 
2σ  and the parameter α , the critical point cε  is shifted to-

ward negative values. The dependence of the mean field value versus 

noise intensity is shown in Fig. 18, b. Here, one can see re-entrant 

phase transitions at negative values of the control parameter at large 

spatial coupling intensity. With an increase in ε , the first threshold 
2
1cσ  is shifted toward small values whereas the second one 

2
2cσ  becomes 

larger. Transition points 
2
1Tσ  and 

2
2Tσ  are related to the condition 

0x x〈 〉 = . With an increase in the noise intensity at 0ε > , the disorder-
ing phase transition is observed.  
 The above calculations of the effective field h  and the mean field 

value x〈 〉  allow us to obtain the corresponding phase diagrams. If the 

initial condition 0 0x ≠  is fixed, then one can obtain the transition 

lines (dash-dotted lines) which correspond to values of the control pa-

  
a                                                  b 

  
c                                                 d 

Fig. 18. Mean field value obtained as solution of Eq. (115) at 0h = : (a) 
dependence x〈 〉  versus ε  at different values of the spatial coupling inten-
sity, noise intensity and the parameter α ; (b) dependence x〈 〉  versus 2σ  at 

10D =  and 0.8α =  and different values of the control parameter ε . 
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rameter Tε , the noise intensity 
2
Tσ  and the spatial coupling TD  shown 

in Figs. 17, 18. The lines of critical points (solid and dashed lines) are 

obtained under condition when the bifurcations of the mean field x〈 〉  

occur at 0h =  (see notes in Fig. 18). 
 As seen from Fig. 19, a, an increase in the parameter α , yielding the 

concentration dependent mobility, leads to a decrease in the values 

0cε >  at small spatial coupling intensity. If α  increases, then the 

threshold for the noise intensity grows. It results that the bulk states 

with 1 2x x〈 〉 = −〈 〉  exist at large noise intensities only if the mobility 

( )M x  decreases more abruptly. An interesting situation can be seen 

from Fig. 19, b, where the intensity of the spatial coupling is large. 

Here, at negative values of the control parameter ε , the mean field 

value should behave in a re-entrant manner with variation in the noise 

intensity. Indeed, at small and large 
2σ  the e system is in a homogene-

ous state. Inside the bounded domain of the noise intensity 
2σ , the sys-

  
a                                                 b 

  
c                                                 d 

Fig. 19. Mean field diagrams at different values of the parameter α  (solid and 

dashed lines of critical points plotted at 0 0x = , 0h = ) and initial conditions 

0x  (transition dash-dotted lines are plotted at 0 0.6x = , 0h = ). Figures (a) 
and (b) correspond to 2.0D =  and 10.0D = , respectively. Figures (c) and (d) 

correspond to 0.2ε =  and 0.2ε = − , respectively.
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tem is in inhomogeneous state with 0h =  and 0x〈 〉 ≠ . An increase in 

the parameter α  decreases values ε  at which the ordered state with 

0x〈 〉 ≠  is observed and extends the corresponding domain of the noise 

intensities. Let us consider the diagram in the plane (
2,Dσ ) shown in 

Fig. 19, c. Here, at positive values of the control parameter ε , an in-
crease in the noise intensity destroys the state 0x〈 〉 ≠ , as usual. At 

negative ε , we get the re-entrant behaviour of the mean field x〈 〉 , 

where with α  growth transition values for the spatial coupling inten-
sity decrease, and the domain of the noise intensity with the re-entrant 

behaviour extends. 
 Let us compare our results with computer simulations. To this end, we 

have computed averaged value 2M〈 〉 , the moment 
2
2M〈 〉 , and the value  

 
2 2
2 2

2

M M〈 〉 − 〈 〉χ =
σ

 (116) 

that can be understood as a generalized susceptibility or variance. Av-
eraging was done over 7 experiments in a stationary limit ( ∞→t ) at 

the time interval of 
410t =  to 

42.3 10t = ⋅ . Obtained results are shown 

in Fig. 20. From Figure 20, a, one can see a nonmonotonic behaviour of 

the order parameter 2M〈 〉  versus noise intensity. The variance χ  in 

Fig. 20, b, shows two peaks on observable values of the noise intensity 
2σ  in the corresponding interval. Peaks in 

2( )χ σ  dependence are re-
lated to two thresholds of the re-entrant phase transition. Finally, to 

show the entropy-driven phase transitions mechanism in the system 

under consideration, let us study a topology change of the distribution 

st ( ; , 0)P x x h〈 〉 =  at fixed mean-field values 0x〈 〉 > . In the ordered (in-
homogeneous) state, the number of extrema of the above distribution 

is changed. Indeed, in the domain of point A (see Fig. 21), the stochas-
tic distribution has one peak shifted toward positive values of x  due to 

  
a                                                  b 

Fig. 20. Order parameter 2M  (a) and generalized susceptibility χ  (b) ver-
sus noise intensity 2σ  at 0.5ε = − , 10D = , 0.8α = .
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the fact that 0x〈 〉 > . With an increase in the noise intensity 
2σ , mov-

ing through the dashed line toward the point B, an additional peak in 

the distribution function appears. The dashed line corresponds to the 

system parameters when a double degenerated point of the stochastic 

distribution appears. Therefore, here we get the generalization of 

noise-induced transitions for extended systems. 

4.1.4. Influence of External and Internal Noise Sources 

Now, let us assume the presence of the nonequilibrium medium, 
which sets external fluctuations. Since the influence intensity of 
the medium is determined by the control parameter ε , we may con-
sider an assumption about its fluctuations to be suitable for the de-
scription of real situations: 0 ( , )tε → ε + ζ r . We endow the Langevin 
source ( , )tζ r  by the Gauss properties  

 2( , ) 0, ( , ) ( , ) ( ) ( )t t t C t t′ ′ ′ ′〈ζ 〉 = 〈ζ ζ 〉 = σ − δ −r r r r r%  (117) 

with the spatial correlation function 

 ( )
2

2

| |
( ) 2 exp

2

d
C

− ′⎛ ⎞−′− = λ π −⎜ ⎟λ⎝ ⎠

r r
r r . (118) 

 

Fig. 21. Phase diagram of phase transitions showing the change of the sto-
chastic distribution ( ; 0, 0)stP x x h〈 〉 > =  extrema. Insertions display forms 
of distributions of stochastic field x . Other parameters are as follows: 

0.2ε = − , 0.8α = ; the mean-field value is calculated according to the val-
ues of D  and 2σ  for points A and B, respectively. 
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Here, λ  is the correlation length of the external noise ζ ; 
2σ%  is the in-

tensity. 
 As a result, we arrive at the Langevin equation in the form  

 
[ ]

( ) ( , ) ( ) ( , ),
x x

M x x t g x t
t x

⎛ ⎞∂ δ⎡ ⎤= ∇ ⋅ ∇ + ζ + ∇ ξ⎜ ⎟⎢ ⎥∂ δ⎣ ⎦⎝ ⎠
r r

F
 (119) 

where noises ξ  and ζ  are assumed to be independent. 
 In what follows, we again pass to a discrete space, representing the 

continual equation (119) in the form  

 ( ) ( ) ( ) ( ) ( ).i
L ij j R jl l l L ij j j

l

dx F
M x t g t

dt x

⎡ ⎤∂= ∇ ∇ + ζ + ∇ ξ⎢ ⎥∂⎣ ⎦
 (120) 

Here, left- and right-differences, ( )L ij∇  and ( )R ij∇ , respectively, are 

consistent with definitions (90). Equation (120) can be rewritten in a 

more convenient form for a further analysis  

 ( ) ( ) ( ) ( ) ( ) ( ),i
L ij j R jl L ij j j ij j j

l

dx F
M g t g t

dt x

⎡ ⎤∂= ∇ ∇ + ∇ ξ + Δ ζ⎢ ⎥∂⎣ ⎦
%  (121) 

where j j jg M x=% ; the external noise ( )j tζ  obeys Gaussian properties: 

( ) 0i t〈ζ 〉 = , 
2

| |( ) ( ) 2 ( )i j i jt t C t t−′ ′〈ζ ζ 〉 = σ δ −% , where | |i jC −  is a discrete repre-
sentation of the spatial correlation function (| |)C ′−r r . 
Early Stage of the System Evolution with Two Noises. As done in pre-
vious sections, we will study the instability of the state ( , ) 0x t =r , tak-
ing only into account the linear terms in Eq. (120). In this case, the dy-
namical equation for the structure function takes the form  

 

2 2

2 2 2 2

( , )
( ) ( , ) 2

2 2
( , ) ( ) ( , ),

(2 ) (2 )d d

dS k t
k S k t k

dt
k k

d S q t d G q S q t

= −ω + σ −

ασ σ− +
π π∫ ∫q q

%
 (122) 

where ( )G q  is the Fourier transform of the external-noise correlation 

function ( )C ′−r r . The dispersion relation reads [84]  

 ( )2 2 2 2 2
1 0 1( ) 2 ( ) ,k k D C k d C C⎡ ⎤ω = − σ − ε + σ − σ −⎣ ⎦% %  (123) 

where σ%  is the intensity as in Eq. (117). The dispersion relation indi-
cates that for ( ) 0kω > , the homogeneous null state is stable. This oc-
curs for 

2 2 2
0[ (| |)] 0rC =−ε + ασ + σ ∇ >r% , so we can define an effective 

control parameter  

 2 2 2
ef 0[ (| |)] 0,rC =ε = −ε + ασ − σ ∇ >r%  (124) 
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such that the homogeneous null state is stable for ef 0ε > . Therefore, 

the onset of stability is now given by 
2 2 2

0[ (| |)]t rC =ε = ασ − σ ∇ r% , which in 

a discrete space is 
2 2

0 12 ( )t d C Cε = ασ + σ −% . Moreover, the expression 

for ( )kω  has a noise dependent term that can be considered as a modifi-
cation of the spatial coupling parameter. Thus, we can define an effec-
tive spatial coupling parameter 

2
ef 1D D C= − σ%  [90]. 

Mean Field Analysis of the Stationary Case. Let us consider the sta-
tionary case. To this end, we can use the standard procedure described 

above to find the stationary distribution as a solution of the corre-
sponding Fokker−Planck equation. The total probability density func-
tional obeys the equation [37, 61, 62, 67]  

 
2 2

| |
,

.

ij j jr r
ij ri j

j j j mn nj n
m nj n

V
M D x

t x x

g g g C g
x x −

⎛ ⎡ ⎤∂ ∂ ∂= Δ − + Δ −⎜ ⎢ ⎥⎜∂ ∂ ∂⎢ ⎥⎣ ⎦⎝
⎞∂ ∂−σ + σ Δ ⎟⎟∂ ∂ ⎠

∑ ∑

∑% %%

P

P

 (125) 

To perform mean-field calculations, we exploit the one-point probabil-
ity density satisfying the equation  

 
( )

( ),i
ij j i

ji

P t
M P t

t x

∂ ∂= Δ 〈 〉
∂ ∂ ∑ %  (126) 

where  

   2 2
| |

,

.j j jr r j j j mn nj n
r m nj j n

V
M M D x g g g C g

x x x −

⎡ ⎤∂ ∂ ∂= − + Δ − σ + σ Δ⎢ ⎥
∂ ∂ ∂⎢ ⎥⎣ ⎦

∑ ∑% % %%  (127) 

Assuming that a stationary distribution ( )s iP x  can be obtained under 

no flux conditions, the quantity jM〈 〉%
 should obey the equation  

 ( ) 0.ij j s ij
M P xΔ 〈 〉 =∑ %  (128) 

Following the standard procedure, one can find that the mean-field 

distribution function can be computed directly from the stationary 

equation  

 

2

2
1 0

( ) ( ) 2 ( ) ( ) ( )

2 ( ) ( ) ( ) ( ),

s

s

V
hP x M x dD x x g x g x

x x

d g x C g x C g x P x
x x

⎛ ∂ ∂⎡ ⎤− = − + 〈 〉 − − σ +⎜ ⎢ ⎥∂ ∂⎣ ⎦⎝
⎞∂ ∂⎡ ⎤+ σ 〈 〉 − ⎟⎢ ⎥∂ ∂⎣ ⎦ ⎠

% % %%

 (129) 

where, according to the mean-field approximation, one can put 

( ) ; ( )g x g x〈 〉 〈 〉  [37], and drop the prime for 2D dD′ = . Therefore, for the 
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stationary distribution one has  

 
( ; ; )

( , , ) exp ,
( ; )s

x x h
P x x h N dx

x x

′Ω 〈 〉⎛ ⎞′〈 〉 = ⎜ ⎟′Θ 〈 〉⎝ ⎠
∫  (130) 

where  

f x M x g x
x x h M x D x x d C h

x x x

∂ σ ∂ ∂⎡ ⎤Ω 〈 〉 = − + 〈 〉 − − − σ +⎢ ⎥∂ ∂ ∂⎣ ⎦

2 2
2

0

( ) ( ) ( )
( ; ; ) ( ) ( ) ,

2

%
%  

(131) 

 
a 

 
b 

Fig. 22. Dependence of the mean field versus the noise intensities (internal and 

external) at 0.4α = , 0.2ε = − , 10D =  (a) and the phase diagram at different 

values of the correlation radius λ , spatial coupling parameter D  and α  (b) 
(curves 1−3 correspond to 0λ = , whereas curves 1′−3′ relate to 1λ = : 1 and 1′–

8.3D = , 0.4α = ; 2 and 2′– 10D = , 0.4α = ,3 and 3′– 8.3D = , 0.6α = ). 
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2 2
0 1( ; ) ( ) 2 ( )( ( ) ( )).x x M x d g x C g x C g xΘ 〈 〉 = σ + σ − 〈 〉% % %%  

Unknown field h  and x〈 〉  can be obtained form the self-consistency 

equation described above. 
 Let us consider an influence of spatial correlations λ  of external 
noise on a position of the critical points. Corresponding phase dia-
grams are shown in Fig. 22 at different values of D  and α  (curves 1−3) 

and at different values of spatial correlation radius λ .  
 As figure shows an increase in D  leads to decrease in critical noise 

intensity magnitudes 
2σ%  and promotes re-entrance in phase transition 

picture (see curves 1, 2). The same situation is observed when the pa-
rameter α  increases (see curves 1, 3). An increase in the correlation 

radius of the external noise results in increase in its critical values (see 

curves 1′−3′). It leads to the fact that area of re-entrant behaviour of 

the order parameter shrinks. 
Strong Coupling Limit. Considering a strong coupling limit, we as-
sume D → ∞  and neglect all possible correlations, i.e. ( ) ; ( )x x〈ϕ 〉 ϕ 〈 〉 . 

Hence, the stationary distribution functions are given by the mean 

field approach for each phase and have the form ( , ) ( )sP x x x x〈 〉 = δ − 〈 〉 . 

Next, to obtain an equation for the effective field h , we integrate Eq. 

(112) and find 

 2( ) ( ) ( 2) ( ),h M x V x M x′ ′= 〈 〉 〈 〉 − σ 〈 〉  (132) 

where prime denotes derivative with respect to the argument. 
 In the homogeneous case, Tε < ε , we have 0x x〈 〉 = , and h  becomes a 

function of the initial conditions. If the value 0x  is fixed, then the 

field h  decreases with an increase in ε  until it reaches the null value, 

and increases from the null value with an increase in 
2σ . As it follows 

from the Eq. (132) and mean field analysis, no re-entrance can be found 

in strong coupling limit. Therefore, a re-entrant behaviour of the 

mean-field value is realized only at finite magnitudes of the spatial 
coupling intensity D . 
 In the case of Tε > ε , we have 0h = . Solutions of Eq. (132) give val-
ues for the bulk phases  

 ( )1/2
2 2 2

1,2

2
1 (1 ) 4 .

2
x

α
〈 〉 = ± − − αε + − αε + α σ

α
 (133) 

The corresponding transition lines are defined by condition 1 0x x〈 〉 =  

that leads to  

 
2 2 2 2

0 0
2
0

(1 )
.

1T

x x

x

α σ − + α
ε =

+ α
 (134) 

The critical point (for 0 0x = ) is  
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 2 2,cε = α σ  (135) 

which coincides with linear stability analysis. (One should not be con-
fused comparing our results with results in Refs [76, 84]. We consider 

the internal multiplicative noise influence, whereas in Refs [76, 84] 

systems with an external multiplicative noise and conserved dynamics 

were studied. In above papers, it was noted that the critical value cε  

differs from the obtained in Eq. (135) by the multiplier 2d . Such mul-
tiplier arises only if an external noise is introduced. If we follow the 

procedure described in Ref. [76] and consider external fluctuations, 

supposing 0 ( , )tε → ε + ση r , where ( , )tη r  is the Gaussian noise, then 

we will recover results with the multiplier 2d .) It follows that the 

strong coupling limit sets the critical values for both the control pa-
rameter and the noise intensity, which correspond to 0ck = . In other 

words, at 
2ε > ασ , unstable modes start to growth. Moreover, we can 

define values cα < α =  ε/σ2
 at which phase separation exhibits spatial 

patterns. Due to  [ 1, 1]ε ∈ −  and 
2 0σ > , 0α ≥ , one gets that cα  de-

creases with an increase in the noise intensity 
2σ . At negative values of 

the control parameter, we get the phase separation with no patterning. 
 For the system with two stochastic sources, one can find that critical 
value for the control parameter is renormalized as  

 2 2
0 12 ( ).c d C Cε = ασ − σ −%  (136) 

From this, it follows that two stochastic sources compete with each 

other. Here, we get shift of the critical point with the multiplier 2d  

related to the noise intensity 
2

0Cσ%  and spatial correlations 1C . 

4.2. Stochasticity in Hyperbolic Transport 

In this Section, we focus on a more conceptual question related to the 

fluctuations of the flux J  or, more concretely, to their conceptual in-
terpretation. We shall see that, depending on the value of the relaxa-
tion time Dτ  and of the observational time scale, such fluctuations can 

be interpreted in two different ways described in Ref. [40]. To discuss 

these ideas, we must recall some results concerning hydrodynamic sto-
chastic noise. 
Hyperbolic Transport with Noise. We discuss now the stochastic noise 

in a system,  

 ,Lτα + α = − α + ζ&& &  (137) 

which may generally represent the hyperbolic transport (3) with noise. 

Taking into account both independent variables α  and α ≡ β& , Eq. 

(137) may be written as  



86 D. O. KHARCHENKO, P. K. GALENKO, and V. G. LEBEDEV 

 α βα = β + ζ β = − α − β + ζ
τ τ

% & %&
1

, .
L

 (138) 

The set of equations (138) represents the second-order equation (137) 

as two first-order evolution equations, in a way that the system be-
comes Markovian. In Eq. (138), αζ  and βζ  are the respective stochastic 

sources, whose second-order moments have to be obtained. The correla-
tor of fluctuating terms is defined as follows  

 

2 2
eq eq eq eq

2 2
eq eq eq eq

0 1 0
( ) ( ) 1

1
1

L

t t L

⎡ ⎤−⎡ ⎤ ⎢ ⎥⎡ ⎤ ⎡ ⎤〈α 〉 〈αβ〉 〈α 〉 〈αβ〉 τ⎢ ⎥′〈ζ ζ 〉 = + ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ 〈βα〉 〈β 〉 〈βα〉 〈β 〉 ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ −⎢ ⎥τ τ⎣ ⎦ ⎢ ⎥τ⎣ ⎦

% % . (139) 

In Equation (139), we have eq eq 0〈αβ〉 = 〈βα〉 =  because α  and α&  have 

opposite time-reversal symmetry. Thus, it is found  

     α β α β β α〈ζ 〉 = 〈ζ 〉 = 〈β 〉 〈ζ ζ 〉 = 〈ζ ζ 〉 = 〈α 〉 − 〈β 〉
τ τ

% % % % % %2 2 2 2 2
eq eq eq

2
0, ,    .

L
 (140) 

 To obtain the second moment of equilibrium fluctuations of α  and 

β , we assume, as in Section 2, that α  and β  are independent variables. 

Then, including both of these variables into the entropy, one can write  

 2 2
eq

1 1
( , ) ,

2 2
S S A Bα β = − α − β  (141) 

where only second-order terms have been considered. According to Eq. 

(7), the probability of fluctuations is described by  

 2 2( , ) ~ exp .
2 2B B

A B
Pr

k k

⎡ ⎤
α β − α − β⎢ ⎥

⎣ ⎦
 (142) 

Note that, in Eq. (142), we have identified the fluctuations δα  and δβ  

with α  and β , respectively, because their equilibrium average values 

are zero for both of them due to the form of the evolution equations 

(138). Then, in equilibrium, we have  

 2 2
eq eq, .B Bk k

A B
〈α 〉 = 〈β 〉 =  (143) 

To evaluate the ratio /A B , we obtain the entropy production corre-
sponding to Eq. (141). This one yields  

 [ ] 0.dS dt A B A B A B= − αα − ββ = − αα − αα = −α α + α ≥&& & & && & &&  (144) 

From this, and by following the usual methods of nonequilibrium 
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thermodynamics [91], it follows the linear relation between thermody-
namic flux −α&  and its conjugated force A Bα + α&& . This is  

 .A Bα + α = −μα&& &  (145) 

Comparison of Eq. (145) with Eq. (137) yields B = τ , 1μ = , and 

A L= . Thus, as follows, the second moments of α  and β  are related by  

 
2

eq

2
eq

.
B

A L

〈α 〉 τ= =
〈β 〉

 (146) 

Introducing this relation into Eq. (140) it is found  

       
L

α α β α β β〈ζ 〉 = 〈ζ ζ 〉 = 〈ζ ζ 〉 = 〈ζ 〉 = 〈β 〉 = 〈α 〉
τ τ

2 2 2 2
eq eq2

2 2
0, 0,    .% % % % % %  (147) 

Since 
2 0α〈ζ 〉 =% , the first equation in Eq. (138) may be introduced into 

the second one. Therefore, we get  

 ,L βτα + α = − α + τζ%&& &  (148) 

with  

 2
eq(0) ( ) (0) ( ) 2 .t t Lβ β β β〈ζ ζ 〉 = 〈τζ τζ 〉 = 〈α 〉% %  (149) 

Thus, the expression for the noise keeps the same form as in the case 

with 0τ = . This is in agreement with the ideas of fluctuation-
dissipation, which relate the fluctuations to the dissipative part of the 

equation [the term in L  in Eq. (148)]. 
 The transition from noisy hyperbolic transport described by equa-
tion (137) to Langevin equation Lα = − α + ζ&  might be analyzed by con-
sidering the generalized entropy (141) in the following form  

 2 2
eq( , ) .

2 2

A A
S S

L

τα β = − α − β  (150) 

With 0τ → , the last term in 
2β  disappears together with the term in 

α&&  in Eq. (137). In this case, the dynamics of α  is described by a simple 

relaxation with a temporal constant given by 
1L− . One interesting 

situation may be found when 
1 1L−τ << << . In this case, α  decays 

slowly and β  decays fast. Assume, for instance, that 1≈L  s
−1

 and 
310−τ ~  s. The typical relaxation of α  will be of the order of 1 second 

and β  will decay in a millisecond scale. In this case, βζ%  describes the 

effect of all the variables whose relaxation time is much less than 
310−

 

s, in such a way that they may be assumed to decay instantaneously in 

comparison with β . 
Fluctuations or Independent Variable. Now, consider a special system 
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with two independent variables α  and β  in such a way that the relaxa-
tion rate of β  is characterized by its high but finite value. In this case, 

one may write Lδβ ≡ β + α , i.e. = Lβ − α + δβ , where δβ  being the inde-
pendent part of β . This part of β  is orthogonal to the slow subspace 

generated by α . Then, we may write  

 α = − α + δβ δβ = − δβ
τ

&&
1

, .L  (151) 

and  

 | | 2 | |(0) ( ) .t tBLk L
t e e

A
− τ − τ〈δβ δβ 〉 = = 〈α 〉

τ τ
 (152) 

 The following three cases may be outlined in considering Eqs (151) 

and (152). 
(i) If τ  is sufficiently short, δβ  acts as a ‘noise’ in the equation for α  

(the first equation of system (151)).  
(ii) If τ  is not completely negligible as compared to 

1L− , δβ  acts as a 

coloured noise.  
(iii) In the limit 0τ → , one has  

 2
eq(0) ( ) 2 ( ).t L t〈δβ δβ 〉 → 〈α 〉 δ  (153) 

 Thus, it is seen that the transition of Eq. (150) and (151) from small 
τ  to vanishing τ  is conceptually interesting. It is illustrative of how 

the variable β  (i.e., α& ) goes from an independent variable with its own 

dynamics to a purely Markovian stochastic noise. In physical terms, 

the frontier between small τ  and vanishing τ  is settled by the time 

scale one is able to measure. For instance, if 1L =  s
−1

 and 
810−τ =  s, 

the system will have two independent variables, α  and α& , for an ob-
server which is able to measure picoseconds (

1210−
 s). However, it will 

have only one independent variable, α , plus a stochastic noise, in a 

form of α& , for an observer which is only able to measure milliseconds 

( 310−
 s). The latter observer will be able to work in the ‘adiabatic’ ap-

proximation with very slow α  in comparison with β . 
 The situation described by Eqs (1) and (2) is interesting from this 

perspective. For negligible values of the diffusion relaxation time Dτ , 

one should use the Landau−Lifshitz formalism for the fluctuating hy-
drodynamics [28] and write  

 2 ,c
c

D c
t

∂ = ∇ + ζ
∂

 (154) 

where the stochastic noise cζ  is interpreted as  

 cζ = −∇ ⋅ δJ  (155) 
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with δJ  being a fluctuating part of the diffusion flux, i.e.  

 .D c= − ∇ + δJ J  (156) 

According to the Landau−Lifshitz approach [28], one has  

 (0) ( ) 2 ( ).Bt k DT t〈δ δ 〉 = δJ J  (157) 

 Assume, in contrast, that Dτ  is small but still measurable. In this 

case, we get  

 , ,D J

c
D c

t t

∂ ∂= −∇ ⋅ τ + = − ∇ + ζ
∂ ∂

J
J J  (158) 

with c  and J  being independent variables of the entropy given by 
the generalized Gibbs equation (8). The second moments of the fluc-
tuation of c  and J  are given by Eq. (11). The noise Jζ  would cor-
respond to values relaxing in time scales much shorter than Dτ , in 
such a way that it may be considered as Markovian noise:  

 (0) ( ) 2 ( ).J J Bt k DT t〈ζ ζ 〉 = δ  (159) 

In the limit of vanishing Dτ , the fast part of J  becomes a stochas-
tic noise, and we get cζ  in Eq. (154) described by Eq. (157). 
 Still another form to discuss the interpretation of noise in the 
context of Eq. (137) is to write Eq. (138) without any added noise, 
i.e., in the following form  

 , .
D D

L βα = β β = − α −
τ τ

&&  (160) 

This set of equations may be integrated to give  

 
0

( ) ( ) ( ) ( ),
t

t
t M t t t dt t′ ′ ′α = − − α + β∫&  (161) 

with the memory function  

 ( ) exp ,
D D

L t t
M t t

⎛ ⎞′−′− = −⎜ ⎟τ τ⎝ ⎠
 (162) 

and the exponential relaxation  

 0
0( ) ( ) exp .

D

t t
t t

⎛ ⎞−
β = α −⎜ ⎟τ⎝ ⎠

&  (163) 

In this case, the ‘noise’ is due to the uncertainty in the value of 
( )tα&  at the initial time 0t . 
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 Mori’s expression for the fluctuation-dissipation theorem states 

that  

 2
eq( ) ( ) ( ) .t t M t t′ ′〈β β 〉 = − 〈α 〉  (164) 

Indeed, if we use the result (146), we obtain that  

 2 2 2
0 eq 0 eq eq( ) ( ) .

L
t t〈α 〉 ≡ 〈β 〉 = 〈α 〉

τ
&  (165) 

Combination of Eq. (165) with Eqs (162) and (163) gives Eq. (164). 
 Again, when τ  becomes negligible, ( )M t t′−  given in Eq. (162) be-
comes  

 ( ) ( ),M t t L t t′ ′− = δ −  (166) 

and Eq. (161) becomes  

 ( ) ( ) ,t L t αα = − α + ζ&  (167) 

with  

 2 22 .Lα〈ζ 〉 = 〈α 〉  (168) 

Note that, in the limit (166), we consider t t′> , whereas in the limit 

(168), a factor 2  appears because one considers | | 0t t′− >  rather than 

0t t′− > , i.e. one considers both 0t t′− >  and 0t t′ − > . 

4.3. Stochastic Hyperbolic Model for Spinodal Decomposition 

Considering the stochastic hyperbolic model, let us start with a set of 

equations for the local concentration and the flux in the forms as follow: 

 ,x
t

∂ = −∇ ⋅
∂

J  (169) 

 D

x
M x t

t x

∂ δτ = − − ∇ + ζ
∂ δ

J J r
[ ]

( ; , )
F

. (170) 

Here, Dτ  is a relaxation time for the flux J . In further analysis, let us 

introduce a dimensionless time / xt t′ = τ  and operator 
1

x x
−′∇ = ∇l , 

where scales xl  and xτ  are introduced (usually, the time scale for such 

transition is defined through the Debye frequency Dω , diffusion en-
ergy diffE  and temperature T  as 

1
diffexp( / )x D E T−τ = ω ). If the diffu-

sion is caused by the vacancy mechanism, then the quantity diffE  is en-
ergy for migration of vacancies. Next, let us move to dimensionless 

quantities / DJ J V′ =  with /D x xV = τl , 0/M M M′ = , 0/′ ′=F F F , 
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DV′ζ = ζ for flux, mobility and free energy, and noise respectively. 

Inserting such quantities into Eq. (169), dropping the prime, and as-
suming 0 0 D x xM V= τlF , we reduce the set of two first-order time equa-
tion to the second-order equation in the form of 

 ( )
2

2
( ) ( ) ( , ) ,

x x
M x g x t

t t

∂ ∂δ + = ∇ ⋅ ∇μ + ζ
∂ ∂

r  (171) 

where /D xδ = τ τ  states the ratio of relaxation times for 

( ) ( )g x M x= . At 1δ << , one arrives at the parabolic model for the 

spinodal decomposition discussed previously in Section 4.1. 
 In our consideration, it can be shown that two conjugate variables, 

as the local concentration and the flux, should be considered as com-
mensurable variables as a special case. Moreover, we will explain that 

even the flux is supposed to be fast variable our results leads to the 

well-known picture of nonlinear dependence of an amplification rate at 

early stages, whereas at late stages (stationary case), the hyperbolicity 

of the model does not affect on the system behaviour essentially. 

4.3.1. Early Stages Analysis 

Let us consider an early stage of the system evolution. As done before, 

we can obtain an evolution equation for the spherically averaged struc-
ture function ( , )S k t . In the following, we use the special case of the 

white noise assumption, C t t t t′ ′ ′ ′− − → σ δ − δ −r r r r2( , ) ( ) ( ) . After some 

algebra, one gets 

 
( )

2
2 2 2

2

2 2 2 2

( , ) ( , )

1
2 2 ( , ).

(2 )d

d d
S k t k Dk S k t

dt dt

k k d S q t

⎛ ⎞
δ + = − − ε + ασ +⎜ ⎟
⎝ ⎠

+ σ − ασ
π ∫ q

 (172) 

This equation is reduced to Eq. (63) in the deterministic case 
( 2 0σ = ), whereas in the case of 1δ <<  and 0α =  one arrives at the 
Cahn−Hilliard−Cook equation [12, 59]. It can be seen that the dis-
persion relation now takes the form  

 
2 2 2

2

( ) 1
( ) ,

2 4

i k k D
k

− ε + ασω = − ± −
δ δ δ

 (173) 

which, in the case of the local equilibrium, 1δ << , is as follows:  

 1 2 2 2

1
( ) (2 ) 1 2 ( ) .k i k k D−

δ=
⎡ ⎤ω = − δ ± δ − ε + ασ⎣ ⎦  (174) 

At ck k< , the imagine part of the frequency (173)  
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 − ⎡ ⎤ℑ ω = δ ± − δ − ε + ασ
⎣ ⎦

1 2 2 2( ( )) (2 ) 1 1 4 ( )k k k D  (175) 

can be used to obtain maximal wave-vector amplitude mk . 
 To obtain a normalized amplification rate, we need to compare dis-
persion relations obtained for both parabolic and hyperbolic stochastic 

models. To that end, we use the quantity CHC m( )kω  obtained from the 

parabolic Cahn−Hilliard−Cook model with multiplicative fluctuations 

as a normalization factor, 
2

m ( ) / 2k D= ε − ασ  (see Subsection 4.1.1). 

Acting in such a manner, the normalized amplification rate takes the 

form 
* 2 2
hyp hyp CHC m( ) / ( ) / ( ) /q q k k qω = ω ω , where / cq k k= , and disper-

sion relation hyp( )kω  is taken from Eq. (175) as ω = ℑ ωhyp ( ) ( ( ))k k . 
Therefore, for the stochastic hyperbolic model one has  

 

2 2
2 2

* 2

2 2 2

( )
1 4 (1 ) 1

2
( ) .

( )

q q
D Dq q
q

ε − ασ+ δ − −
ω =

δ ε − ασ
 (176) 

In such a case, both parabolic and hyperbolic normalized amplification 

rates take values: 
2( ) / 0q qω =  at 1q =  and 

2( ) / 4q qω =  at 0q = . At 

0δ →  (transition to the one slow variable (parabolic) model), one ar-
rives at the linear dependence 

2( ) /q qω  versus 
2q . 

 The corresponding dependence from Eq. (176) is shown in Fig. 23. 

Comparing different curves, one can see that in the nonlinear behav-
iour appears only if 

2 2( ) 0δ ε − ασ ≠ . It means that in the deterministic 

case 
2 0σ =  the nonlinearity is caused by 0δ ≠ , whereas the stochastic 

contribution leading to renormalization of the control parameter ε  is 

able to promote essential contribution to the above effect. Indeed, at 

large difference between 
2ασ  and | |ε  at fixed α , the nonlinear effect 

becomes well pronounced. 
 To relate the stochastic approach to the deterministic one, let us re-
write the dimensionless dispersion relation in the form 

 
2 2 2( ) 1

( ) ,
2 4

xx ck f r ki
k

′′ +
ω = − ± −

δ δ δ

%
 (177) 

where the notation 
2

xx xxf f′′ ′′= + ασ%
 is used, 0|xx xf =′′ = −ε . From this, it fol-

lows that the internal noise influence leads to a change in the barrier 

height for the effective free energy f%  due to 
2

0|xx xf =′′ = −ε + ασ% . Moving 

back to dimensional variables, let us interpret our results for the sto-
chastic case. Here, instead of originally exploited correlation and dif-

fusion lengths, /C c xxl r f′′= −  and 0D xx Dl M f′′= − τ , respectively, it is 
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convenient to use the effective lengths, /C c xxl r f′′= − %%
 and 

0D xx Dl M f′′= − τ%% . In such a case, we arrive at formula for the amplifica-

tion rate given by Eq. (66). The difference in deterministic and sto-
chastic cases lies only in the renormalization of the barrier height for 

the effective free energy f% . An increase in the intensity 
2σ  of multi-

plicative fluctuations determined by the field dependent mobility de-

creases the length 
2

Dl ∝ ε − ασ%
 and increases the scale 

21 /Cl ∝ ε − ασ% . The local nonequilibrium effect at small 
2σ  is en-

hanced by the diffusion flux relaxation that is in good correspondence 

with results obtained for the deterministic case analysis.  

4.3.2. The Effective Fokker−Planck Equation for the Hyperbolic Model 

To describe the system states, we need to know the distribution func-
tion of the field x . In order to get it, one should obtain the correspond-
ing Fokker−Planck equation. According to the standard procedure, we 

represent our system in a discrete d-dimensional space with 
dN  cells 

with the mesh size l . Then, following Eq. (171), the system dynamics 

will be described by a set of equations for every cell of the space: 

 

Fig. 23. Comparison of the function * 2( ) /q qω  for hyperbolic (modified 
Cahn−Hilliard) model for deterministic and stochastic cases at different 
values of the ratio /D xδ = τ τ  and different noise intensities 2σ . Other pa-
rameters are as follows: 0.5ε = , 1D = , 0.8α = .
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2

2
.L Ri i

ij j jl j j
l

d x dx F
M g

dt dt x

⎛ ⎞∂δ + = ∇ ∇ + ζ⎜ ⎟∂⎝ ⎠
 (178) 

Next, let us introduce a new variable, ip , playing a role of an effective 

momentum, i ip x= δ & . Then, by definition, the probability density 

function is given by the averaging of the density function ( , , )x p tρ  

over noise: ( , , ) ( , , )x p t x p t= 〈ρ 〉P . To construct an equation for the 

macroscopic density function P , we exploit the conventional device to 

proceed from the continuity equation:  

 0i i
i i i

x p
t x p

⎡ ⎤∂ρ ∂ ∂+ + ρ =⎢ ⎥∂ ∂ ∂⎣ ⎦
∑ & & . (179) 

Inserting the momentum definition, we obtain  

 ( ) ,
t

∂ρ = + ζ ρ
∂

L N  (180) 

where the operators ii
= ∑L L  and ii

= ∑N N  are defined as follows  

 
1

,L Ri
i ij j jl i

i i l

p F
M p

x p x

⎛ ⎞∂ ∂ ∂≡ − − ∇ ∇ −⎜ ⎟δ ∂ ∂ ∂ δ⎝ ⎠
L  (181) 

 .L
i ij j

i

g
p

∂≡ −∇
∂

N  (182) 

 Within the interaction representation, the density function reads 

exp( )t℘ = − ρL  that allows to rewrite Eq. (180) as  

 ,
t

∂ ℘ = ℘
∂

R  (183) 

 ( , , ) .t t
i i i i

i i

x p t e e−⎡ ⎤= ≡ ζ ⎣ ⎦∑ ∑ L LR R N  (184) 

The well-known cumulant expansion method serves as standard and 

effective device to solve such a type stochastic equation [92]. Neglect-
ing terms of the order 

3( )O R , we get the kinetic equation for the aver-
aged quantity ( )t〈℘ 〉  in the form  

 
0

( ) ( ) ( ) ( ).
t

t t t dt t
t

⎡ ⎤∂ ′ ′〈℘〉 = 〈 〉 〈℘〉⎢ ⎥∂ ⎣ ⎦
∫ R R  (185) 

Within the original representation, the equation for the probability 

density reads  
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 ( )
0

( ) ( ) ( ).
t

P t C e e d P t
t

τ − τ⎧ ⎫∂ ⎪ ⎪⎡ ⎤= + τ τ⎨ ⎬⎣ ⎦∂ ⎪ ⎪⎩ ⎭
∫ L LL N N  (186) 

Due to the physical time much larger than a correlation scale ( )t >> τ , 

one can replace the upper limit of the integration by ∞ . 
 To proceed this one, we use the procedure proposed in Ref. [69, 70] 

to obtain the effective Fokker−Planck equation for the hyperbolic sto-
chastic model. Expanding exponents, we arrive at the equation  

 ( ) ,P Pt
∂ − =∂ L C  (187) 

where the operator  

 (1) (2)≡ +L L L  (188) 

has the components  

 (1) (2)

1
,    .L Ri

ij j jl i
i ii l i i

p F
M p

x x p p

⎛ ⎞∂ ∂ ∂ ∂≡ − + ∇ ∇ ≡⎜ ⎟δ ∂ ∂ ∂ δ ∂⎝ ⎠
∑ ∑L L  (189) 

 The collision operator C  is defined as follows:  

 
∞ ∂= = = ≡ − ∇

∂∑ ∑( ) ( ) ( ) ( ) (0)

=0

,  ( ),  ,  n n n n L
ij j

n i i

C C g
p

C M NL L N N , (190) 

where 
( )nL  in the collision operator C  is defined through the commuta-

tor 
( ) ( 1)[ , ]n n−=L L L ; moments of the noise correlation function ( )C τ  are 

defined as follows:  

 ( ) 1

0
( !) ( ) .n nn C d

∞−= τ τ τ∫M  (191) 

Substituting all definitions into commutators, one can calculate the 

collision operator in the form:  

 

( )
2

(0) (1)

2

2 2
(1)

2
.

L R
ij j jl l

i i

R
jl lL R L

ij j jl l ij j i
i i l i i

g g
p

g
g g g p

x p x p p

∂= − − ∇ ∇ +
∂

⎧ ⎫⎛ ⎞∂∇ ⎛ ⎞∂ ∂ ∂⎪ ⎪+ ∇ ∇ − ∇ +⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭

∑C M M

M

 (192) 

 Noting that, in further consideration, we are interesting in behav-
iour of the distribution ({ }, )ix tP , not the total one, ({ },{ }, )i iP x p t . The 

reduced distribution can be obtained according to the moments  

 ( ) ({ }, ) ({ },{ }, ) d ,n n
i i i i i

i

P x t x p t p p⎡ ⎤≡ ⎣ ⎦∏∫P  (193) 
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where the integration is provided over a set { }ip . Then, performing 

corresponding manipulations with Eq. (187), we arrive at the recursive 

relations for the moments 
( ) ({ }, )n

iP x t , where 
(0) ({ }, )iP P x t≡ , the first 

moment 
(1) ({ }, )iP x t  can be considered as a flux J  of the probability 

density, i.e. 
(1)P = J . 

 Indeed, taking the zeroth moment of momentum, p , over Eq. (187), 

we obtain the expected continuity equation  

 
1

.t
i i

P
x

∂∂ = −
δ ∂∑ J  (194) 

The first-moments’ calculation leads to  
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For the second moment, we obtain  

 
(2)

(1) (0)1
( ) .L R

ij j jl l
i

P
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x

∂ = − ∇ ∇
δ ∂

M M  (196) 

As a result, the evolution equation for the flux J  is of the form  

 

⎡⎛ ⎞⎛ ⎞∂∇∂⎢⎜ ⎟∂ = − + ∇ ∇ − ∇ +⎜ ⎟⎜ ⎟⎜ ⎟δ ∂ ∂⎢ ⎝ ⎠⎝ ⎠⎣
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x x

g g P
x

J J M

M

 (197) 

Therefore, we arrive at the set of two differential equations, Eq. (194) 

and Eq. (197). Eliminating the flux J , we, finally, get the Fok-
ker−Planck equation for the hyperbolic stochastic model in the form  

    

⎡ ⎤⎛ ⎞∂∇∂ ∂ ∂ ∂δ + = − ∇ ∇ − ∇ −⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂∂ ⎢ ⎥⎝ ⎠⎣ ⎦
∂− ∇ ∇

∂

∑

∑
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2

2
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i i l j
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ij i j

gP P F
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t x x xt

g g P
x x

M

M

 (198) 

In the continuum space, the obtained effective Fokker−Planck equa-
tion for the probability density functional is as follows:  
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(199) 

 The stationary probability density can be obtained explicitly under 

no flux conditions. Indeed, here, we arrive at the result  

 ( )(0) (1)
(0)

1
[ ] exp [ ] ( ) ln ( )sP x x d M x

⎧ ⎫∝ − + −⎨ ⎬
⎩ ⎭∫ rF M M
M

. (200) 

This is similar to that presented in Eq. (100). The main difference is 

that in the distribution (200) we have a contribution related to the first 

moment of the noise correlation function with respect to the time. It 

means that the stochastic source appeared in the hyperbolic model 
should have smeared temporal correlation function. In other words, its 

frequency spectrum should have some cut-off frequency and the noise 

should be considered as a coloured noise in time. It looks absolutely 

natural, because as it was shown in previous subsection the stochastic 

hyperbolic transport should be characterized with fixed correlation 

time, ζτ , which may be small comparing to the relaxation time for the 

concentration field. Taking the temporal correlation function in the 

exponential form related to the Ornstein−Uhlenbeck process ζ , 

( )1( ) exp | | /C t t t t−
ζ ζ′ ′− = τ − − τ , one can find 

(0) 2= σM , 
(1) 2

ζ= τ σM . It is 

seen that the temporal correlation radius ζτ  makes the renormalization 

of the critical values for the noise intensity, whereas main results ob-
tained for the stochastic parabolic model remain the same. 
 Making use the fluctuation dissipation relation one can relate the 

correlation scale with the relaxation time for the flux, ; Dζτ τ . It follows 

that, in the white noise limit characterized by 0ζτ → , one gets the 

parabolic model for the spinodal decomposition, whereas one arrives at 

the hyperbolic model at fixed but small ζτ . This conclusion is in a good 

correspondence with the linear stability analysis, where it was shown 

that in order to get the nonlinear dependence of the amplification rate 

it is necessary to consider two modes: concentration field and flux. 

5. CONCLUSIONS 

A model for kinetics of fast spinodal decomposition in a binary system 

free from imperfections and with the molar volume independent of 

concentration is developed. The model takes into account a finiteness 

of the diffusion speed DV  and assumes that the spinodal decomposition 

may proceed with the rate of the order of DV . Such an approach leads to 

the description with independent variables of the concentration and 
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atomic diffusion flux having different relaxation times to their own 

local equilibrium values. It leads to a modified Cahn—Hilliard equa-
tion, describing the spinodal decomposition for both diffusion and 

wave propagation of atoms (components of the binary system). In such 

a case, the equation describes kinetics of fast separation the rate of 

which compatible with the diffusion speed DV . 
 To describe fast decomposition, the free energy density 

e ne( , , )f c c f f∇ = +J  includes standard local equilibrium contribution 

e ( , )f f c c= ∇  and purely non-equilibrium contribution nef  proportional 
to the square of the atomic flux, ⋅J J . The use of ( , , )f c c∇ J  in such a 

form has a statistical basis: there are many particles within every local 
volume, and it includes a reduction of the available phase space for 

each particle. It is shown that the fast spinodal decomposition is de-
scribed by a hyperbolic type of differential equation. This description 

is true if the time scale of the process of phase separation has the order 

of the relaxation time Dτ . It occurs for the case of the fast frequency 

and short wave-lengths which cannot be neglected in the description of 

evolution from an unstable state to a new metastable state in spi-
nodally-decomposing system and, generally, for fast moving inter-
faces. Despite classic Cahn−Hilliard scenario described by parabolic-
diffusion equation predicts much more diffuse boundaries, the hyper-
bolic scenario exhibits evolution with sharper boundaries between two 

separating phases. It occurs due to description of hyperbolic evolution 

by the equation with a finite diffusion speed and description of the 

parabolic evolution by the equation with an infinite diffusion speed. 
 The provided analysis leads to the obtaining the phase and group 

atomic speeds. The real values for speeds define the finite propagation 

of a single harmonic (for the phase speed) and a packet of harmonics 

(for the group speed). The hyperbolic model is able to give prediction 

for scenario from very earliest up to latest of spinodal decomposition. 

We considered the fluctuations of the solute density and the solute dif-
fusion flux at the equilibrium steady state. The power spectra of a sol-
ute number density and a solute diffusion flux have been reviewed. 

The latter has a non-vanishing relaxation time leading to a hyperbolic 

transport equation for the evolution of the density. Several interpreta-
tions of the stochastic source related to fast variables eliminated from 

the description have been examined. Particularly, the phase separation 

scenario of the system with internal multiplicative noise related to the 

field dependent mobility for parabolic (Cahn—Hilliard) and hyperbolic 

models is analyzed. Analysis was performed for early and late stages of 

the evolution analytically and by computer simulations. The stationary 

case is considered with the help of the mean field approach. 
 For the system undergoing spinodal decomposition with the field 

dependent mobility, we have derived the Fokker−Planck equation. It 

was found that its stationary solution can be written in exact form. 
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Our theoretical approach shows that we dealt with the entropy driven 

phase transitions mechanism. As shown, the field-dependent mobility 

leads to delays in dynamics at early stages and, therefore, leads to de-
lays in domain growth law at late stages. Stationary values of the order 

parameter reduced to the second moment of the stochastic field depend 

on the parameter that governs the functional dependence of the mobil-
ity: with an increase in such parameter, the order is suppressed. Con-
sidering stationary states, we extend the mean field approach to the 

systems with the field-dependent mobility. It was found that an in-
crease in the parameter that governs the functional dependence of the 

mobility, the critical points for the phase transitions are shifted. The 

system can undergo a re-entrant phase transitions when the mean field 

becomes nontrivial inside the fixed domain of the noise intensity. The 

strong coupling regime shows that a position of the critical point de-
pends on the constant governing the field-dependent mobility. 
 Our results can be applied to investigations of polymer mixtures 

where relaxation flows are driven by field-dependent coefficients, 

phase separation in binary alloys, and microstructure phase transi-
tions. 
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