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A unified approach to the proof of the Radé and Krdl theorems on remouvability of the zero locus
for analytic and harmonic functions is proposed.
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In 1924, T. Radé [1]| proved the following result.

Theorem 1. Let f(z) be a complex-valued continuous function in a domain G C C, and let
f(2) be analytic in G\ f71(0). Then f(2) is analytic in the whole of G.

Here, f71(0) = {z € G: f(z) = 0}. J. Krél [2] established the following analogue of the Radé
result for harmonic functions.

Theorem 2. Let u(x) be a real-valued continuously differentiable function in a domain G C
CR", n>2, and let u(x) be harmonic in G\ u~'(0). Then u(x) is harmonic in the whole of G.

The formulations of Theorems 1 and 2 are similar, but all known proofs of these results are
completely different. In particular, the analytic functions form an algebra, and this is essentially
used in the proofs of the Radé theorem presented in [3] and [4]. On the other hand, it is easy to
verify the removability of the set u~1(0)({z € G: Vu(zx) # 0} in Theorem 2. Indeed, it follows
from the implicit function theorem that this set can be locally represented in the form of the
graph of a continuously differentiable function of n—1 real variables. Consequently, it has a locally
finite Hausdorff measure of order n—1. But such sets are removable for continuously differentiable
harmonic functions (see, e.g., [5]). Hence, Theorem 2 is a corollary of the following result.

Theorem 3. Let u(x) be a real-valued continuously differentiable function in a domain G C
C R", n>2, and let u(x) be harmonic in G\|Vu| ™' (0). Then u(x) is harmonic in the whole of G.

The proof of Theorem 3 in [2] is the most delicate part of this paper and contains the
investigation of differentiability properties of subharmonic functions following from the F. Riesz
representation theorem. Using the concept of the viscosity solution, P. Juutinen and P. Lind-
qvist [6] generalized Theorems 2 and 3 for some class of quasilinear elliptic and parabolic
equations of the second order. In particular, these theorems hold for p-harmonic functions with
1 <p < oo

In the present paper, we propose a unified approach to the proof of the Radé and Kral
theorems, which essentially simplifies all known proofs of these results.

1. Notation and auxiliary results. As usual, 0 and A denote the Cauchy-Riemann
operator in the complex plane C and the Laplace operator in R", respectively. If u(x) is a
real-valued continuously differentiable function in a domain G C R", then Vu(z) = (d1u(z), ...,
..., 0pu(z)) denotes the gradient of this function in G. We shall use the following two lemmas.
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Lemma 1. Let f(z) be an analytic function in a domain G C C. Then the function |f(z)|*
is subharmonic in G for all a > 0.

Lemma 2. Let u(z) be a real-valued harmonic function in a domain G C R"™, n > 2. Then
the function |Vu(z)[™ ™Y is subharmonic in G.

Lemma 1 is very simple and well-known, while Lemma 2 is a non-trivial and sharp result
of E.M. Stein and G. Weiss [7].

2. Proof of theorem 1. Suppose that the conditions of Theorem 1 hold. Let f(z) = u(z) +
+ iv(z), where u(z) and v(z) are real-valued functions in G. For any point zy € f71(0), we have
lu(z)| = o(|f(2)]"/?) as z — 2. Combining this with Lemma 1, we conclude that the function
u(z) + €| f(2)]"? (z € G) is continuous, subharmonic for all € > 0, and superharmonic for all
e < 0. Hence, the function u(z) is harmonic in G.

Similarly, the function v(z) is harmonic in G. Therefore, the functions f = v +iv and df are
harmonic in G. If G\ f~1(0) # @, then f = 0in G\ £~ '(0) and, consequently, everywhere in G.

3. Proof of Theorem 3. Suppose that the conditions of Theorem 3 hold. For any k €
e {1,...,n} and for any point zo € |Vu|"}(0), we have |dpu(z)| = o(|Vu(z)[™ ™) as 2 — .
Combining this with Lemma 2, we conclude that the function dyu(z) 4 ¢|Vu(z)[V ™) (2 € G)
is subharmonic for all € > 0 and superharmonic for all ¢ < 0. Consequently, the function Opu(z)
is harmonic in G (k = 1,...,n). Hence, u(z) is an infinitely differentiable function in G and
Au = 0 on the set E = (G \ |Vu|71(0)) J F, where F is the interior of |Vu|~1(0). Since E is
dense in G, it follows that Au = 0 everywhere in G.
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A. B. IlokpoBcbkuii

IIpocTe noBenenns teopem Pasno tTa KpaJjia nmpo ycyBHICTH MHOXKWHU
HYJIB I aHAJITUYHUX TA TApMOHIYHUX DYHKITii

TacruryT maremarnkun HAH Ykpainu, Kuis

3anpononosaro edunuti nidrid do dosedenna meopem Pado ma Kpaaa npo ycysHicms MHOMCUHU
HYNIB OAA GHAAIMUYHUT MG 2aPMORIYHUT GYHKYIT.

Karowost caosa: teopema Pajo, amamgituana yHKIls, rapMoHidHa (DYHKIlsA, CyOrapMOHITHA
bYyHKITISA, MHOKUHA, HYJIB.
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A. B. IlokpoBckuii

IIpocToe mokazarenbcTBO TeopeM Pano m Kpasa 06 ycrpanumocTu
MHOXKECTBa HYyJIeil JJisi aHAJIUTUIECKUX U TapMOHUYECKUX (hyHKIIUA

WNucturyr maremarnku HAH Ykpannor, Kues

IIpednooicern edunviti nodxrod x doxaszamesvcmey meopem Pado u Kpanaa 06 ycmparumocmu mro-
otcecmea Hyaet OAf GHAAUMUYECKUT U 2APMOHUNECKUT PYHKUU.

Karouesnte caosa: teopema Paro, anajgurnaeckas pyHKIINsI, rapMOHUYIecKasi DyHKIHs, cyorap-
MOHHUYECKast (PYHKIIHsI, MHOYKECTBO HYJIEH.
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