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In this presentation we study binary alloy systems subjected to particle irradiation and 
thermal noise influence. We discuss two competing mechanisms of the system evolution: 
dynamics driven by irradiation and stochastic influences bringing the system toward thermal 
equilibrium. Using a phase-field formalism and Monte-Carlo modeling we consider self-
organization processes in binary alloy systems with field/concentration dependent 
mobility/diffusion coefficient. Generalization of the phase separation scenario and patterning 
in such systems are presented. 

 

1. INTRODUCTION 
It is well known that the sustained 

irradiation of materials produces a disorder 
which can be structural (isolated point defects, 
traps, dislocation loops, clusters of vacancies 
and interstitials). Such point defects in alloys 
are considered as unstable particles which can 
exist for some fixed lifetime and can lead to 
self-organizational processes: if its density is 
large, then the interaction processes start to 
play a crucial role leading to a new phase 
appearance caused by collective effects. If the 
above disorder is continuous then a net flux of 
defects can be induced that results in driving 
the material into stationary non-equilibrium 
states. For irradiation processes that occur at 
finite temperature a thermally activated 
dynamics leads to annealing such non-
equilibrium disorder. Therefore, the question 
which is of fundamental interest is to study 
competing dynamics caused by regular and 
irregular forces leading to microstructural 
change in such materials. It is known that 
dynamical systems often reach some steady 
state (quasi-steady state in the case of alloys 
under irradiation), and one appealing approach 
is to develop an effective theoretical and 
thermodynamical framework to address the 
stability of these steady states.  

Usually, to investigate such non-
equilibrium phenomena one can exploit multi-
scale modeling: molecular dynamics (MD) 
methods or kinetic Metropolis procedures that 
allow one to find statistical information that 
can be transferred to the next hierarchical level  

 
of calculation, namely kinetic Monte-Carlo 
(KMC). The principle idea lies in the fact that 
on atomic length (~10-10 m) and time scales 
(~10-13 s) the system dynamics can be captured 
by MD. Unfortunately, the number of atoms in 
MD simulations is still small (~109 atoms), the 
time interval for predictions of MD 
simulations is too short (~10-8 s) to describe 
microstructure transformations on a atomic 
length scales and mesoscopic time scales [1]. 
The problem can be partially solved by KMC. 
The principle idea of the original KMC can be 
stated as follows: given a system and its phase 
space, a distribution of configuration at initial 
(starting) time, and a set of transition rates 
between configurations, one can generate 
temporal trajectories of the system in its phase 
space. Such trajectories should be produced by 
correct statistical weight. Both the average 
evolution of the system and its fluctuations 
around this average can be obtained from a 
large set of temporal trajectories. From the 
mathematical viewpoint the problem is to 
solve the numerically master equation of the 
Chapmen-Kolmogorov’s kind. This method 
has some limitations because one needs to 
calculate all possible macroscopic transition 
rates in one time step.  

Progress that alleviates this limitation has 
been made recently by the introduction of the 
phase field theory adapted to description of 
crystals [2]. Using this method one can 
consider a local atomic density field in which 
atomic vibrations have been integrated out up 
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to diffusive time scales. Therefore, dissipative 
dynamics is governed by the temporal 
evolution such local density field. 
Deterministic dynamics can be generalized 
introducing stochastic sources into the 
corresponding evolution equations. As usual, 
fluctuating sources represent statistical 
information about the influence of microscopic 
processes onto mesoscopic ones. Considering 
alloys under irradiation, such fluctuating 
sources can be divided by its physical 
character: thermal fluctuations obeying the 
fluctuation-dissipation relation and external 
noise addressed to local dynamics driven by 
irradiation caused by energetic particles, some 
transformation of defects, chemical reactions, 
etc. Such KMC simulations allow one to 
investigate the role of fluctuating sources on 
microstructural transformations of alloys under 
irradiation, and to predict the system behavior 
under fluctuating sources influence. Despite 
some useful advantages of this method, one 
needs to highlight that due to the diffusive 
time scales considered this method does not 
contain a mechanism to simulate elastic 
interactions to study deformation properties of 
alloys. 

Returning back to the main question noted 
above, one needs to say that in the case of 
alloys under particle irradiation, in order to 
describe the non-equilibrium steady states and 
the corresponding system behavior one needs 
to construct an associated non-equilibrium 
potential/functional to find a stationary 
distribution. If such a functional can be found 
exactly, then one can describe local physical 
fields such as concentration deviation, local 
magnetization, polarization in real space, and 
thus investigate their spatial profiles. 
Considering the related problem of irradiation 
of alloys, this can be shown to be a 
consequence of patterning which in turn is a 
result of the competing dynamics between two 
of the above noted dynamics [3]. Formation of 
patterns of anti-structure defects induced by 
irradiation, was studied in [4]. It was shown 
that under irradiation stable and unstable 
configurations of anti-structure defects can be 
observed. The authors explain that at a fixed 
irradiation dose an increase in the temperature 
leads to a transition from unstable into stable 
ordered configurations. Some attempts to 

study the influence of fluctuation terms on 
microstructure transformations were recently 
reported [5,6]. It was shown that in binary 
alloys under irradiation a macroscopic phase 
separation manifested as a patterning can be 
observed (see for example [7-9]). In these 
works the authors studied systems when the 
dynamical governing equation is identical to 
that describing a binary alloy undergoing a 
quasi-chemical reaction A↔B with phase 
separation processes. The term related to such 
a quasi-chemical reaction (local force) was 
assumed to be linear (Debye relaxation 
processes) and to describe ballistic mixing or 
birth-death processes for unstable particle 
ensembles. It was shown that by controlling 
the irradiation intensity one arrives at different 
regimes of the system’s behavior: patterning, 
macroscopic phase separation, and solid 
solution. 

In this paper we discuss a similar model 
reduced to the quasichemical reactions in 
alloys A↔B that occur with the help of 
additional product (Schlögl model for 
fluctuations in moving fronts between two 
phases: A+2X↔3X, X↔B). Such a model can 
be obtained directly from the dynamical 
approach if the possible stationary states are 
well known. It is possible then to describe 
clustering and dissociation effects caused by 
irradiation. In addition we introduce into the 
model a flux of a local atomic density and a 
fluctuating source obeying a fluctuation-
dissipation relation. Moreover, we assume that 
mobility, related to the diffusion coefficient, is 
a field-dependent function that leads to the fact 
that our fluctuating force is also field-
dependent function. We will show that under 
such noise influence the system can undergo 
phase separation, patterning with different 
kinds of structures: bubbles/porous, spinodal 
decomposition, and strip patterns with 
dislocations. Our analytical investigation is 
compared with computer simulations and 
verified with well known results of phase 
modeling of alloys under irradiation. 

2. GENERALIZED MODEL 
We study the problem using a Cahn-

Hillard-type description of fronts, allowing us 
to simulate the walls of the labyrinthine 
patterns. The equation describing the temporal 
evolution of the concentration field x=x(r,t) is 
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composed of two terms, one for mixing caused 
by irradiation (relocation of atoms), and 
another one for thermal diffusion. Formally, 
such a reaction-diffusion model can be 
described by the generalized continuity 
equation of the form  

Jxfxt ⋅∇−=∂ )( ,    (1) 
where f(x) stands for the local dynamics, and J 
is the flux for transport phenomena. 
Considering the non-Fickian diffusion, we 
exploit a gradient of interaction potential U(r) 
( , where the 
spherically symmetric interaction potential 
u(r) between particles separated by a distance 
|r| is introduced). The corresponding force 
given by the gradient of U(r) governs the 
transport phenomena. In the case of the small 
interaction radius compared to the diffusion 
length the concentration field x will not vary 
significantly within the interaction radius. It 
allows us to approximate the integral by 
κx+βΔx, where 
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rc is a correlation radius. Therefore, the 
obtained flux allows one to describe phase 
separation processes with mutual (lateral) 
interactions; the combined model with local 
dynamics can be used to consider the spatial 
patterns induced by the fluctuations of the 
bath.  

Generally, the local dynamics is defined by 
a force assumed to be of the form 

, where the local potential is 
assumed as . 
Here ε and μ are control parameters related to 
rates of quasi-chemical reactions in the 
system. For the diffusion flux one use the 
definition: 

dxxdVxf /)()( =
4/3/2/)( 432 xxxxV ++−= με

xFxDJ δδ /)( ∇−= , where D(x) is a 
field-dependent diffusion coefficient, and the 
free energy functional is of the from 

, related to the 

lateral interactions between particles. For the 
diffusion coefficient we will use an 
approximate formula describing a bell shaped 
form of D versus the atomic density field, i.e. 

. Such the approximation is 
widely used in the study of phase separation 
dynamics in a large class of physical systems. 
The parameter α is usually reduced to the ratio 
between bulk and surface diffusion 
coefficients (α≈1-D

∫ ∇+−= ]2/)(2/[ 22 xxdrF βκ

12)1()( −+= xxD α

b/Ds). 
Considering the system under real 

conditions, one needs to introduce fluctuating 
source related to the problem under 
consideration. Formally, such fluctuations can 
be included in an ad hoc form. Using 
variational principles one can rewrite Eq.(1) in 
the form , where Λ is a 
Lyapunov’s functional related to the right hand 
side of the Eq. (1): 

xxDxt δδ /)]([ 1 Λ−=∂ −

 . 

Next we introduce Gaussian fluctuations ζ into 
such an equation in order to satisfy the 
fluctuation-dissipation relation 

∫ ∇+−=Λ )]/)(()()()([ xFxDxDxDxfxdr δδδδ

 )'()'()]([)',';(),;( 21 ttrrxDtrxtrx −−= − δδσζζ ,  
σ2 is the noise intensity reduced to the 
temperature of the effective bath; 0),;( =trxζ . 
As a result we arrive at a stochastic evolution 
equation for the mass density field in the form  
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δ
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treated in the Stratonovich sense. This 
equation can be used to provide KMC 
simulations of dynamical regimes of the 
system. Statistical properties of the system 
states can be found from the stationary picture 
that is described by the corresponding 
stationary distribution, following from the 
stationary solution of the Fokker-Planck 
equation.  Performing the standard calculations 
one arrives at the distribution functional in the 
form  
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It follows, that the stationary distribution 
functional P[x] or the effective functional 
Uef[x] are obtained exactly: the form of initial 
functional Λ[x] is supposed to be known, the 
second term in Uef[x] can be calculated if 
needed. Let us note, if we assume that Λ[x] 
plays a role of an effective free energy 
functional, then rewriting the integral in 
Eq. (4) as ∫ −= 1)](ln[

2
1 xDdrSef , the expression 
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for Uef[x] can be transformed into the 
thermodynamic relation between free energy, 
internal energy and entropy functionals: 
Uef[x]=Λ[x]+Sef[x]. Therefore, according to 
such a relation the noise intensity σ2 reduces to 
an effective temperature of the bath, whereas 
Sef[x] plays the role of an effective entropy. 
Such a situation is well known in stochastic 
systems theory. It appears when the 
multiplicative fluctuations corresponded to the 
internal noise. The later one results in the 
entropy change that yields entropy driven 
phase transitions [10-13]. In this paper we will 
not discuss the above phase transitions, but we 
will consider the ability of the noise to sustain 
or induce formation of spatial structures. 

3. RESULTS 
3.1. Internal noise influence on the phase 

separation scenario 
Firstly, let us consider the generalized 

approach based on the Cahn-Hillalrd-type 
theory allowing us to describe a phase 
separation scenario of a microstructure 
transformation. Here we assume that no quasi- 

chemical reactions are possible, i.e. f(x)=0, the 
free energy functional F[x] is assumed in the 
Ginzburg-Landau form, i.e.  

∫ ∇++−= ]2/)(4/2/[ 242 xxxdrF βε .  
Therefore, an evolution of the concentration 
field x=x(r,t) is governed by the Langevin 
equation of the form 
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and 0),( =trξ . Statistical properties of such 
a system can be described by the probability 
density functional P[x], that can be exactly 
found as a solution of the corresponding 
Fokker-Planck equation.  It was shown that 
such a functional is of the form [14]  
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Fig. 1. Typical spatial patterns as a solution of the 
Langevin equation on a regular 2-dimensional lattice of 

N=L2, L=120: a - spinodal decomposition; b - nucleation.  
Other parameters are: β=4, ε=1, α=0.5, σ2=0.2 
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In such kinds of stochastic models, the 
scenario of the phase separation depends on 
the initial conditions: at 0)0,( =rx  the 
system evolves by a spinodal decomposition 
scenario (see Fig. 1,a), whereas at 0)0,( ≠rx  
a nucleation process is realized (Fig. 1,b). In 

further investigation herein, we will study only 
the spinodal decomposition.  

Next, let us consider the early stages of the 
system’s evolution. To this end we calculate  
the structure function )()()( txtxtS kkk −= , in 
the vicinity of the mixed state x=0, where 

rr kr
k dexx id −− ∫= )()2( π . In the framework of 

a linear stability analysis we obtain the 
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evolution equation for the structure function in 
the form  
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      (6) 
from which it follows that the fluctuating 
source does not lead to instability of the 
mixed/disordered state. From exponential 
solutions of Eq. (6) one can see that only 
modes with Ddkk c /)(2 2ασε −=<  are 
unstable and grow at early stages of evolution. 
With an increase in α or σ2 the size of the 
unstable domain modes k<kc decreases. Modes 
with k>kc remain stable during the linear 
regime. One needs to stress that the unstable 
modes cannot be realized at the condition 
ε<ασ2. As it follows, the domain growth 
should be different for additive and 
multiplicative nois. 

In Fig.2 we present solutions of the 
evolution equation (6) at different values of 
the parameter α. It can be seen that an increase 
in α leads to a shift of the peak position toward 
smaller values of k. The peak of S(k) is less 
pronounced in the multiplicative noise case 
than in the case of the additive noise.  It 
follows that, if the multiplicative noise is 
considered, then the dynamics is slowed.  A 
decrease in the peak height means that the 
interface is more diffuse in the case of 
multiplicative noise (see insertions in Fig.2).  

We compare analytical results with computer 
simulations at the same time t in the two-
dimensional lattice.  In the insertions of Fig. 2 
typical patterns and images of spherically 
averaged structure functions are shown.  It is 
seen that in the multiplicative noise case the 
pattern has a more diffuse interface and the 
resonance ring in S(k)-dependence is less 
pronounced than for the additive noise. 

Fig. 2. Evolution of the structure function at 
an early stage t=10 at β=4, ε=1, σ2=0.3. 

Different values of the parameter α are used to 
compare the influence of additive α=0 and 

multiplicative α=0.9 noises (solid and dashed 
lines, respectively). Insertion shows typical 

patterns and corresponding images of 
spherically averaged structure functions at the 
same time obtained from numerical solutions 

of Eq.(4) at x3

 

a 
b 

Fig. 3. Power law for domain size growth: a - log-log plot of the evolution of R(t) at different 
values of the parameter α (insertion shows universal behavior of the function R(t) at large times, 

indicated in the rectangle); b - dependence of the power law exponent z versus parameter α. 
Other parameters are ε=1.0, β=4.0, σ2=0.2 
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At late stages of the system’s evolution one 
can estimate in what manner such thermal 
fluctuations can modify the domain size 
growth law. In order to obtain the linear 
domain size growth law R(t) we use following 
relations:  

∫

∫
== −
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max
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01
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)(;)()( k
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dktkS
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where in this calculation we have used the 
spherically averaged structure function S(k,t) 
[10]. The power law behavior of the function 

 is verified at different values of the 
parameter α, where the domain growth 
exponent depends on α, i.e. z=z(α) (see Fig. 3).  
It is seen that in the case of additive noise 
(α=0) the exponent z≈1/3, whereas at α=1.0 we 
obtain z≈1/4. Therefore, with an increase in α, 
a crossover of dynamical regimes is observed.  
Our results are in good correspondence with 
deterministic and stochastic approaches which 
indicate that an increase in the parameter α 
delays the dynamics [15-17]. Comparing our 
results with results related to phase separation 
regimes in alloys under irradiation, one can 
conclude that with an α increase the crossover 

from strong- to weak-segregation regimes can 
be realized [7].  

zttR ∝)(

3.2. Patterning scenario under irradiation 
and fluctuating source influence 

In this subsection we discuss the influence 
of internal noise on the pattern formation 
scenario in systems under irradiation. To this 
end we assume that there is a local dynamics 
caused by the irradiation, described by the 
force f(x). Moreover, we assume that the 
thermal diffusional processes are possible. The 
latter is described by non-Fickian diffusion 
with interaction potential U(r). Introducing the 
corresponding fluctuating source into the 
evolution equation for the concentration field, 
the probability density functional takes the 
form of Eq. (3). At first let us investigate the 
structure of the effective potential considering 
a homogeneous (zero-dimensional) system 
where the mass density field does not depend 
on the spatial coordinate. To find the 
homogeneous solutions we need to compute 
the extrema positions of the function Uef(x) 
when the noise intensity is changed, and 
calculate the corresponding phase diagram, 
illustrating the change in the number of 
extrema of the function Uef(x).  

 

 
Fig. 4. Bifurcation diagram for noise induced  

transitions (a change number of extrema of the 
function  Uef(x)) at  α=0.2, ε=0.2, μ=-0.5. Solid 

lines define stable states, the dashed line 
responds to the unstable solution. The form of th

Fig. 5. An averaged structure function at different 
values of the noise intensity at t=4000 (the model of 

lateral interactions): triangles correspond to 
σ2=0.25;  circles correspond to σ2=σ0

2; and stars 
relate to σ2=1.5. Other parameters are: ε=0.2, 

μ=0.5, κ=1.0, β=1.0, and α=0.2 
cor e 

effective potential is shown in insertion 
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In our investigations we assume that our 
effective concentration field can take values in 
the interval [-1,1] to describe two possible 
dense phases, whereas for the mixed one it 
corresponds to x=0.  To consider a case 

 let us assume values of both ε and μ 
to locate a minimum U

]1,1[−∈x
ef(x_) at x<0, a 

minimum Uef(x+) we locate at x>0. An 
appropriate choice is ε=0.2, μ=-0.5, α>0. The 
corresponding dependencies  are 
shown in Fig. 4. To understand 
transformations of the system states let us use 
the noise induced transitions formalism [18]. 
As it follows from naive considerations, the 
bimodal stationary distribution 

 becomes unimodal 
with an increase in the noise intensity.  In the 
case under consideration here, the transition 
occurs in the following manner.  In the 
noiseless case, a form of the effective potential 
U

)( 2σ±x

)/)(exp()( 2σxUxP efst −∝

ef is topologically identical to a form of the 
initial potential V(x).  With an increase in the 
noise intensity a minimum of Uef located at x_ 
tends to zero, at  the effective 
potential has a double degenerated point, 
x

αεσσ /22 == s

0=x_=0. Therefore, the values  define a 
spinodal curve. At   the point x

2
sσ

2
0

22 σσσ <<s 0 
relates to a minimum, whereas x_ defines a 
maximum position of the function Uef. These 

two minima differ in depth. At  one 
has U

2
0

2 σσ =

ef(0)=Uef(x+), therefore,  defines a 
coexistence line (binodal). With a further 
increase in the noise intensity we get 
U

2
0σ

ef(0)<Uef(x+). At  
one gets another spinodal. At  the 
effective potential has one well only. 
Therefore, in such a noise induced transition 
we have a shift of the potential extreme, 
transformation of the global minimum into a 
local one, loss of its stability and, finally, a 
change in the number of extrema of the 
function U

/4)( 2122 μεασσ +== −
c

22
cσσ >

ef. To analytically study a possibility 
of patterning in the system under 
consideration, one needs to solve a variational 
problem 0/ =xUef δδ . Indeed, the stationary 
structures x(r) should correspond to extrema 
positions of the effective functional Uef[x]. 
Solutions of the corresponding variational 
problem allows one to find the stable 
structures that are formed in the vicinity of the 
positions’ of local minima of the effective 
potential Uef(x). The corresponding stationary 
profiles of the most probable concentration 
field x(r) obtained, have one period only. This 
result is verified by a numerical solution of the 
Langevin equation (2) where the spherically 
averaged structure function has only one peak 
(see Fig. 5).   

Fig.6. One dimensional concentration profiles (top) and two-dimensional stationary patterns 
at σ2=0.2 (a), σ2= σ0

2 (b) and σ2=2 (c). Other parameters are: α=0.2, ε=0.2,  
μ=-0.5, β=1.0, κ=1

a    b     c 
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The corresponding simulations of  spatial 
patterns in a two-dimensional lattice allows 
one to find that at small noise intensities 

the system is organized in patterns of 
the type “vacancy clusters” with very small 
values of the concentration field (see Fig. 6, a). 
At  when two minima of the effective 
potential U

22
sσσ <

2
0

2 σσ =

ef(x) located at x=0 and x=x+ are 
equivalent in depth, a condition of phase 
separation is realized (Fig.6, b). Here the 
average concentration x(r,t) is the constant 
value (conserved dynamics), but there is no 
domain size growth law, as is realized in phase 
separation processes (see Sec.3.1).  Here, the 
linear size of the domain R saturates and does 
not grow in time, it decreases with  as 

. At large noise intensities 

 the system is organized into strip 
phases with liner defects of the dislocation 
type (Fig. 6, c). It is interesting to note that at 
noise intensities  
fluctuations destroy the stable ordered patterns 
and stable structures can not be formed.  
Patterns cannot be formed if irradiation effects 
are not considered. 

2σ
01.06.122 )()( ±−∝ σσR

22
cσσ >

ακσσσ /4+ 2222
sT =>

4. CONCLUSIONS 
We have discussed the possibility of phase 

separation processes and pattern formation in 
stochastic systems such as binary alloys under 
irradiation conditions.  We have examined the 
phase separation scenario of the system with 
internal multiplicative noise related to the 
field-dependent mobility. Analysis was 
performed for early and late stages of the 
evolution by computer simulations. We have 
generalized the well known results of phase 
separation theory. Comparing the noise 
induced transition picture and pattern 
formation processes, it was shown that the 
system follows the entropy driven mechanism 
by analogy with entropy driven phase 
transition theory. Our study shows that at a 
small noise intensity the system manifests a 
nucleation regime, at fixed values of the noise 
strength a spinodal decomposition is realized, 
and at large noise the system exhibits strip 
patterns with liner defects. Strip structures 
exist in the fixed interval of the noise intensity 
– large fluctuations destroy patterns.  

The obtained results can be applied to study 
patterns in adsorption/desorption processes in 
metal deposition of a monolayer of molecules 
and in processes of microstructure 
transformations of materials subject to 
intensive irradiation. 

REFERENCES 
1. J. Chang, W. Cai, V.V. Bulatov, S. Yip // 

Comp. Mat. Sci. 2002, v. 23, p. 11. 
2. K.R. Elder, M. Katakowski, M. Haataja, 

M. Grant // Phys. Rev. Lett. 2002, v. 88, 
p. 245701. 

3. G. Martin // Phys. Rev B. 1984, v. 30, 
p. 1424; V.G. Vaks, V.V. Kamyshenko // 
Phys. Lett. A. 1993, v. 177, p. 269. 

4. В.В. Михайловский, К.С. Расселл, 
В.И. Сугаков  // ФТТ. 2000, v. 42, №3, 
p. 471. 

5. V.I. Sugakov // Sol. State Commun. 1998, 
v. 106, p. 705.  

6. R.A. Enrique, P. Bellon // Phys. Rev. B. 
2004, v. 70, p. 224106.  

7. R.A. Enrique, P. Bellon // Phys. Rev. Lett. 
2000, v. 84, N 13, p. 2885.  

8. Ji wen Liu, P. Bellon // Phys. Rev. B. 
2002, v. 66, p. 020303(R). 

9. R.A. Enrique, P. Bellon // Phys.Rev B. 
2004, v. 70, p. 094104. 

10. M. Ibanes, J. Garcia-Ojalvo, R. Toral, et 
al. // Phys.Rev.Lett. 2001, v.  87, p. 020601. 

11. B.von Haeften, G. Izus, S. Mangioni, et 
al. // Phys. Rev. E. 2004, v. 69, p. 021107.  

12. J. Buceta, Kevin Wood, Katja 
Lindenberg // Phys. Rev. E. 2006, v. 73, 
p. 042101.  

13. D.O. Kharhcenko, A.V. Dvornichenko // 
Eur. Phys. Jour. B. 2008, v. 61, p. 95.  

14. D.O. Kharhcenko, A.V. Dvornichenko // 
Physica A, be published. 

15. I.M. Lifshitz, V.V. Slyozov // J. Phys. 
Chem. Solids. 1961, v. 19, p. 35.  

16. C.L. Emmott, A.J. Bray // Phys. Rev. E. 
1999, v. 59, p. 213. 

17. J.M. Sancho, A. Hernandez-Machado, 
L. Ramirez-Piscina, A.M. Lacasta // Acta 
Phys. Polonica B. 1993, v. 24, p. 733. 

18. W. Horsthemke, R. Lefever. Noise-
Induced Transitions. Springer-Verlag, Berlin, 
1984. 
 

 59



 

СТАТИСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ АНСАМБЛЕЙ 
НЕСТАБИЛЬНЫХ ЧАСТИЦ С ТЕПЛОВЫМИ ФЛУКТУАЦИЯМИ 

Д.О. Харченко 
Исследуются системы бинарных сплавов, подверженных облучению частиц и 

воздействию тепловых шумов. Обсуждаются два конкурирующих механизма эволюции 
системы: динамика, вызванная облучением, и стохастические воздействия, переводящие 
систему к тепловому равновесию. С использованием формализма теории фазового поля и 
статистического моделирования рассматриваются процессы самоорганизации в системах 
бинарных сплавов с подвижностью, зависимой от поля концентрации. Предложено 
обобщение сценария фазового расслоения и структурообразования в таких системах.  
 
 

СТАТИСТИЧНЕ МОДЕЛЮВАННЯ АНСАМБЛІВ НЕСТАБІЛЬНИХ 
ЧАСТОК З ТЕПЛОВИМИ ФЛУКТУАЦІЯМИ 

Д.О. Харченко 
Досліджуються системи бінарних сплавів, підданих опроміненню часток і  впливу 

теплових шумів. Обговорюються два конкуруючих механізми еволюції системи: динаміка, 
обумовлена опроміненням і стохастичні впливи, що переводять систему до теплової 
рівноваги. З використанням формалізму теорії фазового поля і статистичного 
моделювання розглядаються процеси самоорганізації у системах бінарних сплавів з 
рухомістю, яка залежить від поля концентрації. Запропоноване узагальнення сценаріїв 
фазового розшарування і структуроутворення у таких системах. 
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