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A new key exchange protocol formulated in terms of multivariate cryptography and based on
the elaboration of a common walk in the linguistic graph by correspondents is proposed. This
algorithm is described in details in the case of a known family of graphs of large girth given by
nonlinear equations over a finite field.

Linguistic graphs and their properties. The missing definitions of graph-theoretical con-
cepts, which appear in this paper can be found in [1]. A tactical configuration introduced by
E.H. Moore [2] is a rank two incidence structure I consisting of v, points from the set P and v,
lines from the set L, where each point is incident to s lines, and each line is incident to r points.
We denote the incidence graph of the incidence structure I by I' = I'(P,L,I) and call I' a
tc-graphs, though we shall identify I with the simple graph I' of this incidence relation, if no
confusion can arise. We define the bireqular and bipartite graphs as tc-graphs with bidegrees r, s.
Clearly, the graph I' has order v = v; + v, (number of vertices) and size e = rv; = sv, (number
of edges). We also mean, as usual, that the girth g(T") of the graph I is the length of the minimal
cycle in the graph, and the diameter of the graph is the maximal distance between two vertices u
and v in the graph, denoted by diam(T"). The pair {x,y}, x € P, y € L such that xIy is called
a flag of the incidence structure I.

Let K be a finite commutative ring. We refer to an incidence structure I with a point set
P, = KN and a line set Ly = K as infinite linguistic tc-graphs LI'(r, s,K), if the point (x) =
= (r1,22,...,Tp, Tri1, Trt2,...) € P, is incident to the line [y] = [y1,y2, .-, YUs, Ys+1, Ys+2 - -] €
€ L, if and only if the following relations hold:

glxr—i-l + Clys—‘rl = fl(xlyx% ey Ty Y1,Y2, - 7ys)

521'7’-{-2 + C2y8+2 = f2(x17x27 ey Ty L4115, Y15,Y2,5 - - - 7y87y8+1)

Sixr—i-i + Ciys-i-i = fi(xh T2y ev oy Tp4i—1,Y1,Y2,5 - - - 7y8+i—1)

Here, §; and (j, j = 1,2, ... are nonzero divisors, and f;, j = 1,2, ... are multivariate polynomials
with coefficients from K. Brackets and parentheses allow us to distinguish points from lines
(see [3, 4]).

For each positive integer m > 2, we obtain an incidence structure [,, with a point set
P =K " and a line set Ly = K ST a5 follows: P,,, and L ,, are obtained from P,
and Ly, respectively, by simply projecting each vector into its r+m and s+ m initial coordinates
with respect to the above order, respectively. The incidence I,, is then defined by imposing
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the first m incidence equations and ignoring all others. The incidence graph corresponding to
the structure I, is denoted by LI'(r, s, m,K), and we call it the linguistic incidence structure
or linguistic graph. Of course, LI'(r,s,m,K) is a (|K|", |K|*)-biregular bipartite graph of order
2‘K‘r+s+m.

For each positive integer m > n > 1, we consider the standard graph homomorphism ¢, of
LI'(r,s,m,K) onto LI'(r, s,n, K) defined as a simple projection of each vector from P, ,, and L,
onto its r+n and s+n initial coordinates with respect to the above-mentioned order, respectively.
Let v € LI'(r,s,m,K) and v' € LI'(r, s,n,K) be the vertices of the same type point or line. We
refer the vertex v as a lift of v/, when v = ¢"(v).

Recall that, for simple graphs I'y and I's, a graph homomorphism ¢ of I'y to ' is a mapping
between these two graphs that respect their structure. More specifically, ¢ maps the adjacent
vertices of I'y to the adjacent vertices of I's.

Proposition 1. Let m > n > 1. The map ¢, is a |K|" " "-to-1 surjective graph homomor-
phism from a graph LI'(r,s,m,K) to a graph LT'(r,s,n,K).

From the fact that ¢,' is a graph homomorphism, one can deduce that, for a fixed ring K,
the diameter and the girth of LI'(r, s,n,K) are nondecreasing functions of n.

Proposition 2. Let m > n = 1, and let K be any commutative ring. Then
diam(LL(r, s,m,K)) > diam(LI'(r, s,n,K), and girth(LT'(r,s,m,K)) > girth(LL'(r, s,n,K)).

Let M = {mqy,ma,...,mq} beasubset of {1,2,...m} (set of indices for the equations), d < m
with the standard order. Assume that the equations indexed by elements from M of the kind

Smlxml + leyml - fml(xl7x27 ey Ty Y1, Y2, - - 7y8)

gmzxmg + <m2ym2 = fm2($17x27 ey Ty Ty Y1,Y25 - - - 7ysvym1)

£md:17md + Cmdymd = fmd(gjlw s Ly gy ooy Tmg_ 15 YLy ooy Yss Ymgy - - - 7ymd,1)

define another linguistic incidence structure Ip;. Then the natural projections
(Zy]\r}: (X) — (‘T17x27 LI 7x7’7xm17xm27 L 7‘de)7

¢%: [Y] — [y17y27"'7y87ym17ym27"'7ymd]

of free modules define the natural homomorphism ¢ = ¢} of the incidence structure I,,, onto .
We refer to p = phily as a coloring homomorphism of LI'(r, s, n,K) onto the complete bipartite
graph Kgp, a = |[K"|, b = |K®|. For each line [I] and colour t = [t1,12,...,t,], there is a unique
neighbor (x) € P of the line with the given color p(x) = t. Similarly, (p)] and color d =
= [d1,da,...,ds], there is a unique neighbor [y] € L of the point with the color p([x]) = d. We
will use the same symbol p for the coloring of the linguistic graph Ip;.

It is clear that, for¢ = ¢}, the relations p(x) = p(¢(x)) and p(y) = p(¢(y)) hold. This
means that ¢y is a color-preserving homomorphism of the incidence structure (bipartite graph)
onto another one. We refer to ¢4, as a symplectic homomorphism and graph LT'(r,s, M,K) =
= o (LL(r,s,m,K)) as a symplectic quotient of the linguistic incidence structure I. In the
case of linguistic graphs defined by the infinite number of equations, we may consider the cases
of symplectic quotients defined by the infinite subset M.

Proposition 3. Let m > d > 1, and let M = {my,ma,...,mq} be a subset of {1,2,...,m}.
The map %% is a [K|™ %-to-1 surjective graph homomorphism from a graph LT(r,s,m,K) to
a graph LT(r,s, M,K).
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The color p(x) = p((x)) (p(y) = p([y])) of the point (x) (line [y]) is defined as the projection
of an element (x) ([y]) from a free module on its initial r (relatively s) coordinates. We note that
there exists the unique neighbor of a chosen color in a linguistic incidence structure (finite or
infinite) for each vertex of the incidence graph. We can generalize this fact as follows:

Proposition 4. Let v be a vertex in LI'(r,s,m,K), let u be a vertex in LI'(r,s,n,K)
(LT (r,s, M,K)), and let {¢"(v),u'} be a flag of the incidence structure I, (Inr, respectively).
Then there exists the unique vertex u € LT(r,s,m,K) such that ¢]'(u) = u' and {u,v} is a flag
of the incidence structure I,.

For a subgraph H of LI'(r,s,m,K), we define ¢'(H) and ¢73;(H) to be subgraphs of
LT (r,s,n,K) and LI'(r,s, M,K), respectively. The following proposition allows us to extend
the notation of the graph lift to a tree.

Proposition 5. Let T" be a tree in LT(r,s,n,K) (LT(r,s, M,K)), and let v' be the a fized
vertex in T'. Then, for each lift v of v' from LI (r,s,m,KK), there exists the unique tree T in
LT (r,s,m,K) such that the vertex v € T and ¢ (T) =T (¢p0(T) = T', respectively). Moreover,
the [K|™™™ (K™ %) trees in LT(r,s,m,K), which are preimages of T', are pairwise disjoint
vertices.

We note that the set of lifts of 7" does not depend on the chosen vertex v € T, so the above
proposition could be stated as "Each tree in LI'(r,s,n,K) and LI'(r,s, M,K) lifts to |K|™™"
and [K|™™? trees in LI'(r,s,m,K) and LI'(r,s, M, K), respectively, which are pairwise disjoint
vertices”. Note also that, in particular, it is true for paths lift to paths for these graphs.

Proposition 6. Let C be a component of LI'(r,s,m,K), m > n > 1, and let LT'(r,s, M,K)
be a symplectic quotient. Then ¢;'(C) and ¢ (C) are components of LI'(r,s,m,K) and
LT(r,s, M,K), respectively.

We introduce adjacency relation * I,,, on the set of flags F (Vin) of the incidence structure I,

with a vertex set V;;, = Py, ULs ,, over a commutative ring K as a flag relation (or flag linguistic
graph): the intersection of two distinct flags is a nonempty set (singleton). All vertices forming two
flags F1 = {(z1), [y1]} and F» = {(x2), [y2]} could be located at the same connected component
of I, or all of them are from distinct connected components of I,,,. Assume that the system of
equations G1(x) = g1, G2(x) = ga, ..., Gi(x) = gi, where g; € K are some constants, defines the
connectivity invariants specified for points (x) € P in the linguistic incidence structure I. For
elements (x1), (x2) € P from the same connectivity component in the graph I,,,, the following
relations hold: G;(x1) = G;(x2), i = 1,2,...,t. The existence of i such that G;(x1) # G;(x2)
implies that (x1) and (x2) are points from different connected components of the graph I,;,.
_ As a consequence of Proposition 1, ¢;" induce a map on flags of the incidence structure I,,,,
om™: T 1, — TI, defined by ¢™: {u,v} — {¢7(u),s"(v)}. Similarity, as a consequence of
Proposition 3, ¢}y induce a map on flags of the incidence structure I,,,, ¢} : F I, — T Iy defined
by &hy: {u,v} — {7 (u), o1y (v)}. Tt is clear that an edge of LT'(r, s, m,K) corresponds to some
flag in * I,,,. So, we have the following proposition that can be stated as edges lift to edges.

Proposition 7. The maps ¢ and ¢ are |K|™ "-to-1 and [K|™ 4-to-1 surjections, respecti-
vely. Moreover, ¢™™™ and ¢™ % of LT(r,s,m,K), which are preimages of a fixed edge of
LT(r,s,n,K) and LT(r,s, M,K), are pairwise disjoint vertices, respectively.

Family of linguistic graphs D(k, K) We consider the family of graphs D(k, K), where
k > 2 is a positive integer, and K is a commutative ring. Such graphs have been considered in [5]
in the case K = F; (see [6] for the description of connected components). Let Pp and Lp be
two copies of Cartesian power K, where K is the commutative ring, and N is the set of positive
integers. Elements of Pp will be called points, and those of Lp lines.
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To distinguish points from lines, we use parentheses and brackets. If z € K™, then () € Pp
and [z] € Lp. It will be also advantageous to adopt the notation for the coordinates of points
and lines introduced in [13] in the case of a general commutative ring K:

/ /
(p) = (p0,17p1,1,P1,27p2,1,p2,2,pz72,p2,37 oy Disis Py gy Pii4+-15 Pit 1,05 - - s

/ /
1] =[lo0 01,02, 020,022, 059,023, -5 liis gy Liiv 1, Ly - - -

The elements of P and L can be thought as infinite ordered tuples of elements from K such
that only a finite number of components is different from zero.

We now define a linguistic incidence structure (Pp, Lp, Ip) defined by an infinite system of
equations as follows. We say that the point (p) is incident with the line [I], and we write (p)I[l],
if the following relations between their coordinates hold:

lii — pii = li,0pi—1,;
lii = Pii = lii—1po1,
lijiv1 — Piit1 = ligpo,1,
liv1i — Piv1i = l1,0D},

(these four relations are defined for i > 1, p/Ll = P11, lll,l = l1,1). The incidence structure
(Pp,Lp,Ip) is denoted by D(K). Now, we will say about the incidence graph of (Pp,Lp,Ip),
which has the vertex set Pp|JLp and the edge set consisting of all pairs {(p), [{]}, for which
(p) 111

For each positive integer k > 2, we obtain a quotient (Pp x, Lp k, Ip ) as follows. First, Pp j
and Lp j are obtained from Pp and Lp, respectively, by simply projecting each vector into its &
initial coordinates. The incidence Ip j is then defined by imposing k — 1 first incidence relations
and ignoring all others. The incidence graph corresponding to the structure (Pp , Lpk, Ip k)
is denoted by D(k, K).

To facilitate the notation in the future results on “connectivity invariants”, it will be conveni-
ent for us to define p_1 0 = lo,—1 = p1,0 = lo1 = 0, poo = lop = —1, p{m = llo,o = -1, p'171 = P1,1,
lll,l = ly,1) and to assume that our equations are defined for ¢ > 0. Note that, for i = 0, four
above-written conditions are satisfied by every point and line. Moreover, for ¢ = 1, the first two
equations coincide and give 11 — p11 = l1,0p0,1-

Let k > 6,t = [(k+2)/4], and let u = (uq, U1, ..., Ust, Uy, Ut 441, U411, - --) DE & vertex
of D(k,K) (o € {(1,0),(0,1)}, it does not matter whether u is a point or line). For every r,
2 <r <t let

Gr(w) = ar(w) = > (it ;s = Wiie1ty—ir—i1),
1=0,r

and a(u) = (ag,as,...,a;). Similarly, we assume that a(u) = (ag,as,...,a,...) for the vertex u
of the infinite graph D(K).

Proposition 8. Let u and v be vertices from the same component of D(k, K). Then a(u) =
= a(v). Moreover, for anyt—1 field elements x; € Fy, 2 < t < [(k+2)/4], there exists a vertex v
of D(k,K), for which a(v) = (z2,...,2) = ().

We refer to the first coordinate x1 o = p(x) of a point x and the first coordinate y1,9 = p(y)
of a line y as the color of the vertex (point or line). The following property holds for the graph:
there exists the unique neighbor Ny(v) of a given vertex v of a given color ¢t € K.
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A flag of the incidence system D(n, K) (or D(K)) is an unordered pair {(x), [y]} such that
(x)I[y]. Obviously, the totality of flags FD(n, K) (FD(K)) of the bipartite flag D(n, K) (D(K),
respectively) is isomorphic to the variety K™ So, the flag {(x),[y]} is defined by the tuple
(wlo, T11,--- ,y01). Note that Nyl({X}) = [y]

We consider an operator Np,({(x),[y]}), o € K mapping a flag {(x), [y]} of the incidence
structure D(n, K) (or D(K)) into its image {(x),[y]}, where (x') = N,(y)1o([y]). Similarly, an
operator Np,o({(x), [¥]}) maps {(x), [y]} into {(x), Nywysa()}).

Let a1, ag,...,ax and B1, B, ..., Bk be chosen to be the random sequences of elements from
the commutative ring K. The composition £ = Np o, N1, 3, Npay NL 3, - - - NP, N1, transforms
flag {(x), [y]} into a new flag {(x'), [y’]}. The process of computation of E({(x),[y]} = {(X), [y']}
corresponds to a random walk in the expander graph D(n, K) with the original vertex (x) and
the final point (x').

Symbolic keys and pseudorandom walks on flag space. Let V,,,, = P, U L, ,,
I, = I,(K), m = 2,3,... be a family of linguistic incidence structures with the point set
P =K ST and the line set Lym=K "™ where the parameters s and r are constants, and K
is a fixed commutative ring. The sets of colors for points and lines are K° and K", respectively. We
assume that the subset M = {iy,i2,...,iq}, d = d(m) < m defines the symplectic quotient I,
for each linguistic structure I,,, = I,,(K). Let G1, Go, ..., Gy be the connectivity invariants of
the incidence structures I,,.

Let I, be the flag relation, and let F(Vi,m) = F(Vi(K)) be a variety of flags for the
incidence structure I,,. The information on the flag {(x), [y]} can be given by the pair (x) €
€ K*™ p(y) € K" or, alternatively, by the pair [y] € K" and p(x) € K*. So, F(Vsm) is
isomorphic to K™T"T$,

Let Npgo, a € K° be the operator of change of the point of a flag F = {(x),[y]} defined
by the rule Np,({(x),[y]}) = {(x'),[y]}, where (x')I,,]y] and p(x') = a. Similarly, let Np 4,
a € K? be the operator of change of the line of a flag F = {(x),[y]} specified by the rule
Npp({(x),[y]}) = {(x),[y']}, where [y']L,,(x) and p(y’) = b. It is clear that the application of
a composition of Npa,, Np b, Npays NLpy, --+» NPay, Nop, to the flag F' corresponds to a
walk in our linguistic graph with the starting point (p) or a walk in the graph 71, with the
starting vertex {(x), [y]}.

Let F' = {(x),[y]} be a general flag of our linguistic structure I,,, i.e., (x) = (x1,z2,..., Ty,
g1y Trt 2y ooy Trtm)s V] = (Y1, Y2, -« - s Uss YUst1, Yst2 - - - » Ys+m] are incident. We assume that 1,
T2y eey Ty Y1, Y2, -v oy Ys, Tstl, Lst2, -, Tsrm are the list of independent variables, which
give us the entire information on a flag F' of the incidence structure I,,,. We assume that the
connectivity invariants G, G, ..., G; are written in terms of the coordinates of the point (x).
We refer to a tuple Tr(F) = (z1,22, ..., Zr,Y1,Y2, - - - , Ys, G1(X), G2(X), ..., G¢(x)) as the trace of
0 flag F = {(x), ]}, i-e. Te(F) = (p(x), ply), G1 (x), Ga (), ..., Go(x))-

We introduce a parameter n by the equality n = (r + s +t). Let D1, Da,..., Dy, Dpyq1 and
Ei, Es,...,Ej be two lists of elements, where D;, E; € K(z1,22,...,2,), 4 = 1,2,...,h + 1,
j = 1,2,...,h. We refer to concatenation of both lists (writing the second list after the first
one) as a symbolic key.

We take the flag F' = {(x), [v]} specified by parameters of the kind x1, 9, ..., x, Y1, Y2, - - -,
Ysy Trtly - vy Tppm With trace Tr(F) = (z1,22, ..., Tr, Y1,Y2s - - - s Yr, G1(X), G2(X), ..., G¢(x)).
We concatenate all these tuples with preservation of the order and form a string of parameters
B1, B2, ..., Bn from Q. After that, we compute specializations of the coordinates d; = D;(Tr(F)),
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where i =1,2,...,h, h+1and e; = E;(Tr(F)), where j = 1,2,..., h of our symbolic key. For the

chosen ring K, this allows us to treat coordinates of the string dy, da,...,dn, dpy1 as elements
of K" and coordinates of eq, ea,..., e, as a string from K®. The string (di,ds,. .., ds, dpi1, €1,
€,...,ep) is our numerical key.

Finally, we compute the decomposition IV of operators Np4,, Fr¢;, Npdys Nieoy ---> Npd,,s

NLen, NPe,,,- The application of N to the flag F' corresponds to a walk in the graph 71, with
the starting point F' and the final point N(F).

Note that the colors of the point and the line forming F' = N(F) = {(x), [§]} are dpq € K*
and e, € K", respectively. Under certain conditions, we may restore the trace of a flag F' from the
given F'. We have G;(x) = G;(X), because both flags are from the same connected component.

Additionally,
(jlaj% s 7jr) = Dh—i—l(xl) s Ty Y1, e 7yS7G1(}V{)7 s 7Gt(}v{))7

(1)

(?317?327 o 7?;7”) = Eh(xh ey gy Y1y ooy Ysy Gl(f()a cee 7Gt(5())
We may choose functions Dy 1 and Ej, such that the above-written system of equations has
the unique solution independently of the values of G;(x’), i = 1,2,...,t. Obviously, the first

choice is a system of equations linear in the variables x1, o, ..., Zr, Y1, ¥2, - - ., Ys. Then we can
reconstruct our walk in the reverse order corresponding to the composition of Np., ,, Np 4, ,,
Npe, o5 -y NLeys Npdy-

Multivariate transformations based on symbolic keys. The above-mentioned map
defined by a symbolic key has multivariate nature. The plainspace is the totality of
tuples (1,29, ..« Tsy Y1, Y25 -+ » Yry Tstrt1s Lstr42s - - - y Lstr+m)- FOr each function D;(zq1, 29, . . .,
Zs+r+t), We consider a specialization of the variables z; = x1, 20 = 22, ..., 25 = Zs, Zs+1 = Y1,
2542 = Y2y o s Zsbr = Yrs Zstr+1 = G1(X), Zsrt2 = G2(X), ..., Zstr+t = G¢(x). In such a way, we
construct the function D] depending on the general tuple (Z1,...,Ts,Y1y- -« Yry Trily-- - Trim)
of the plainspace. Similarly, we apply the same specialization to each E; and get the transformati-
on E!. The transformations N, P.D! and Ny, g/ are multivariate bijections on K TSt The formal
composition of Npp;, Ny g Nepy, NL,};Q, ey NRD;L’ NL,E;l, and NPvDZH is a symbolic
presentation of the map N.

Algoritm 1. The algorithm of generation of an irreversible multivariate transformation with
the side door to the secret numeric key.

1. Choose the most preferable singular linear transformation 77: W — W such that 77|y, is
invertible and T}|w, is not invertible, where W7 = K "+ and Wy =K m—d

2. Take the tuple z = (21, 29,...,2;) € W and compute w = T1(2).

3. Choose the flag symplectic quotient ¥ I; of a flag linguistic graph 7 I,,, corresponding to

M = {my,ma,...,mq} with natural order of elements and the incidence structure Ip; with a
point set P = K and a line set L 5y = K, where a point (x) and a line [y] are of the kinds
(x) = (1,22, -+, Ty Ting s Tings - - -, M) and [y] = [Y1,Y2, -« s Ys, Ymy s Ymas - - - » M), respectively.

4. Treat the tuple w € W as a flag F} in the linguistic graph 7 I,,, of the kind

Fl = (‘Tla"wxsuylw” yYrs Tr41y Tr42y - -+ 5 Ty s Tmg+1y - -+ s Tmgs - - - 7xmd7x7"+m)'

5. Generate the symbolic key corresponding to the symbolic way in the flag linguistic graph
FI™ . i.e., a list of polynomial functions D;(vi,va,. .., Vpysst), i = 1,2,..., h+1, Ej(vi,v9,. ..,
Vpistt), J = 1,2,...,h, and compute its specializations D}(Fy)i = 1,2,...,h + 1, E;-(Fg)j =
=1,2,...,h corresponding to the substitution v; = z;, i = 1,2,...,7, v,qj =y;, j = 1,2,...,5,

Urts+e = GZ(F2)7 € = 1727"'7t'
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6. Determine the multivariate transformation N corresponding to the chosen symbolic key,
i.e.,
N =NppNpg; - Npp,NL.g,Npp), |-
7. Compute the flag Fy = N(F}) of the graph *I7, and treat it as a tuple u € W.
8. Choose an invertible affine transformation 75: W — W and compute ¢ = Th(u).
9. Using the symbolic computation, determine a multivariate transformation H: W — W as

a composition of 77, N, and T5». It is clear that the transformation H: W — W is polynomial
over K of the kind

z1 = hi(z1, 22, -, 2k),
zo = ha(21, 22, -+, 2k),
.
2k = hi(z1, 22, ..., 2k),
where

h; € K[Zl,ZQ,...,Zk].

The general algorithms of the key exchange multivariate protocol based on pseu-
dorandom walks on incidence structures. Key exchange algorithms are used to exchange
cryptographic keys between two communicating users (in our case, Alice and Bob). The most
popular key exchange protocol was proposed in [7]. A key exchange algorithm enables the
communicating users, who do not know each other, to share a secret key over an unsecured
communication channel. This secret numerical key can then be used to encrypt any subsequent
communication between the two users, by using the encryption and decryption maps defined via
a path in the graph. In this new algorithm, the secret key is a pseudorandom walk determined
by a list of pseudorandom elements from the commutative ring.

Algoritm 2. The proposed key exchange between two users consists of the following steps:

I. Alice and Bob will determine together

I.1. The free module W = K* over a commutative ring K, where k = r + s + m.

I.2. A linguistic graph LT'(r, s, m,K) corresponding to the incidence structure I,,,.

1.3. The length of a pseudorandom path in the graph I,,, of the kind 2h + 1.

II. Alice should do the following steps:

II.1. Generate a multivariate transformation H: W — W using Algorithm

I1.2. Use the symbolic computation and determine a deformed symbolic key 152-, Ej €
€ Klz1,29,... ,zn]l, i=1,2,....,~h+1,j=1,2,...,h as a composition of the selected transfor-
mation 77 with the chosen symbolic key D;, i = 1,2,...,h + 1, E;, j = 1,2,...,h used in
Algorithm 1. N

I1.3. Send the determined transformation H and the deformed symbolic key D;, i =1,2, ...,
h+1, Ej, 5 =1,2,...,h to Bob.

ITI. Next, Bob should do the following steps:

ITI.1. Choose a random tuple v = (vy,vg,...,vk), where v; € K, i = 1,2,...,k, compute
w = H(v) and send w to Alice.
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II1.2. Determine the secret numerical key dy, dg, ..., dp41, €1, €2, ..., ey in the standard way,
by using the deformed symbolic key, i.e., di = Di(v), ..., h+1 = Dpyq, e1 = Ey (v), ...,
Yyr = v, e, = Ep (v).

IV. Finally, in order to restore the elements of the secret numerical key dy,ds, ...,
dp+t1, €1,€2,...,¢, from the element w € W, Alice should do the following steps:

IV.1. Use the invertible affine transformation 75 to compute T2_1(W) = v’ and write it as a
flag Fy = {%,y} from the graph *I7 .

IV.2. Compute G1(X), G2(X), ..., G¢(%) determined by equations (1) for the elements x,
X2y Tyy Y1, Y2,---,Ys forming a flag Fy = {x,y}.

IV.3. Use the symbolic key and these calculations to determine a secret numerical key as a
list of pseudorandom elements dy, do, ..., dy, dy+1, €1, €2, ..., e from K.

Conclusion. We can use our algorithm in the case of linguistic structures D(m, K). The
previous section gives the full description of data, which we need for the implementation of our
key exchange protocol. The graphs D(m, K) have been used for the construction of a stream
cipher (see [9, 10, 11] and references therein). In this case, both algorithms (symmetric one
and key exchange protocol) can be used together. It is known that the graphs D(m, K) are
good expanders (see [12, 13]). This means that the behavior of pseudorandom walks generated
for their use in these algorithms is similar to the behavior of random walks on random graphs

(see [8, 14, 15]).
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Y. Pomanuuk-Ilosybernp, B. O. Ycrumenko

IIpo HOBI mpoToKOJIM OOMiIHY KJOYaMM, 10 0a3yOThCs
Ha IICEBJOBUIAJIKOBUX OJIyKAHHSX B CTPYKTYPi iHITMIEHITiT

3anponorosaro Ho8i NPOMOKONU 0OMIHY KAOUAMU, WO GOPMYNOIOMBCA 8 MEPMIHAT AN2e0PATHHOT
xpunmozpadii 610 6G2aMBOT SMIHHUL TMa OA3YIOMBCH HA CMBOPEHHT KOPECTOHIERMAMU CTLIALHO20
OAYKAHHA 6 ATH2EICMUNHOMY 2padi. Anzopumm demasvro onucano Yy eunadky 6idomoil pooduru
epagie seaurozo 0b2opmy, wo 3a0aEMbCA HEATHITHUMU PIBHAHHAMY HAO0 CKIHYEHHUM TOAEM.

Y. Pomanuuk-ITomyber, B. A. Ycrumenko

O HOBBIX MPOTOKOJIaX OOMeHa KJII0YaMi, OCHOBAHHBIX
Ha TICEeBAOCIYyYalHbIX OJIy>K/JaHUAX B MHIIUJIEHTHOCTHOU CTPYKType

ITpednootceriv, HOBBIE NPOMOKOADL OOMENG KANOUAMU, CHOPMYAUPOBGHHBIE 8 TEPMUHGT AN2eOPAU-
YecKol Kpunmozpapuy om MHOZUL NEPEMENHBIT U OCHOBAHHBLE HA CO30GHUL KOPPECTOHIEHAMU
0bwiezo bayscdarus 6 Aunzsucmudeckom epage. Arzopumm 0emanrvho ONUCaH 6 CAYHae U36eCmHoll
cemvU 2pados 60ALW020 3aL6AMG, 3a0GHHOT HEAUHETHDLMU YPAGHEHUAMU HAO KOHEUHDIM TOAEM.
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