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Abstract. The dynamic stability of a coupled two-degrees-of-freedom system subjected
to parametric excitation by a harmonic action superimposed by an ergodic stochastic process
is investigated. For the stability analysis, the method of moment functions is used. Explicit
expressions for the stability of the second moments are obtained when the frequency of the
harmonic excitation lies in the vicinity of the combination sum of the natural frequencies.
Good agreement between the analytical and numerical results is obtained. As an application,
the example of the flexural-torsional instability of a thin elastic beam under dynamic loading
is considered.
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1. Introduction.

Over the years two styles have emerged for the investigation of the temporal behavior of
physical systems. The first exploits dynamical equations such as Newton’s equations of
motion, Schrodinger’s equation of quantum theory, and Maxwell’s equations. These have
been fantastically successful for the description of the behavior of relatively simple systems.
In most cases, a real physical system and its loading will differ from the mathematical
model used in the analysis. For the physical system these differences are connected to the
vast amount of small imperfections and defects present, for the load terms — they are due to
perturbation which are stochastic in nature. However, the connection between the basic
dynamical equations, describing the behavior of the physical system, and calculated results
fades through the uncontrolled approximations and assumptions. In contrast to traditional
systems analysis based on deterministic concepts, a second style of analysis, which is
frequently called the application of the theory of stochastic process, accounts explicitly for
uncertainties that always exist in inputs that act on the system [21].

The theory of stochastic processes and random function analysis has been developed to
such a large extent, that it is central to the analysis and design of a wide variety of engineer-
ing systems. As stochastic models have come to be more fully understandable to engineers
and scientists, the study of rather important stochastic system properties has become
possible. Among these properties, we have the property of stability.

The stability of systems has been a subject of numerous studies (see for example Refs.
[3, 15]), leading to results of basic importance. Extending the classical theory of stability of
motion to stochastic systems became necessary. The mathematical aspects of the theory are
treated by Kasminskii [11] and Kushener [14].

The Stability studies are concerned with the qualitative behavior of the solutions to
differential equations, which can often be studied without a direct recourse to solving the
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equations. Stability concepts are usually defined in terms of convergence relative to
parameters such as the initial conditions, or the time parameters [13]. Fluctuation
phenomena about equilibrium and nonequilibrium states of dynamical systems have
important practical and theoretical significance. One of the most interesting effects of
fluctuations is the possibility of changing the stability characteristics of parametrically
excited dynamical systems [12].

Parametric instability under deterministic periodic excitation has been extensively
investigated both theoretically and experimentally and several important instability
phenomena have been established. A corresponding investigation when the excitation is
stochastic has become necessary. The stochastic stability of parametrically excited linear
systems has been the subject of several papers [1,2,7,8,16 — 18]. The moment stability of a
damped Mathieu oscillator under the effect of parametric random excitation was previously
investigated by Ariaratnam et al. [1], where conditions for stability of the first and second
moments of the response were obtained. A coupled two-degrees-of-freedom system of the
same class was studied in Ref. [16], where conditions for stability of the first moments were
found, while the boundaries of the instability regions of the second moments are obtained
numerically from the character of the roots of the characteristic equation, where at least one
of the roots has a positive real part.

In this paper, the problem investigated in Refs. [1, 16] is extended to coupled multi-
degrees-of-freedom linear systems subjected to parametric excitation by a harmonic action
superimposed by an ergodic stochastic process. General expressions for the drift and
diffusion coefficients of Itd’s equations are obtained using the stochastic averaging method
(built upon assumption of weak excitation of wide-band process). For the stability analysis,
the method of moment functions is used. In this present study, the boundaries of the
instability regions of the second moments of the coupled two dimensional linear systems,
investigated in Ref. [16], are obtained numerically and analytically. It is found, that there is
a good agreement with the results obtained by the numerical method. As an application, the
example of the flexural-torsional instability of a thin elastic beam under dynamic loading is
considered [23].

2. Formulation.

We first consider systems that are described by the equations of motion of the form

Gi+2ey g, + @ | g+ Yy hygqiesin2vt | =0 (i=1,...n), (1)
j=1 j=1

where the g; are the generalized normal coordinates, f; are damping constants, @ are the
natural frequencies of the system, h; and v represent, respectively, the amplitude and the

frequency of the harmonic excitation, £ <<1 is a small parameter. These equations describe
exactly the parametrically motion of a class of discrete mechanical systems with n degrees
of freedom about the equilibrium configuration g;= 0.

The stability of the trivial solution ¢g;= 0 has been extensively investigated. A survey of
results with application to the stability of several elastic systems has been given in [4]. For a
given system, the instability conditions define certain regions which correspond to
instability of the equilibrium configuration g,= 0. These regions have peaks at discrete
points, called parametric resonances, that arise when certain relations between the frequency
of the parametric action, 2v, and the natural frequencies of a system, «, are satisfied. It
includes the cases when 2v=2a)/p, referred to simple resonances, 2v=(a@ + @,/ p, referred
to combination sum resonances, and 2v=(| - @| )/ p, referred to combination differences
resonances (j, k, p=1, 2, ..., j#k). Here p represents the order of instability. Common
examples of mechanical systems exhibiting instability under simple resonances are a simple
pendulum whose support is given a vertical sinusoidal oscillation, and an elastic column
subjected to a harmonically varying axial thrust.
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An example of a coupled two-degree of freedom system that can show combination
resonance corresponding to 2v=a + @ is a thin elastic beam in lateral bending and tortional
vibrations under a transverse harmonic action P(f) having constant direction, i.e., acting in a
non-follower fashion (see Fig. 1). While the same load acting in a follower fashion can

cause combination resonance for 2v=| @ - | (see Fig. 2) [10, 20, 23].
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Fig. 1. Flexural-tortional vibration of a rectangu- Fig. 2. Follower case.
lar beam (non-follower case).

We consider now the following coupled multi-degrees-of-freedom linear stochastic sys-
tem described by the equations of motion of the form

G +2€Y B + @lg; + @ | Y hyqesin2ve+ (1)€Y kyq; =0 (i=L..n), ()
j= jl J=

where k; are constants, f{(f) is a stationary random process with zero mean value, and the
phase vector (g, ¢) forms a Markov process.

The moment stability of the solutions of system (2) can be investigated either through
the associated Fokker-Planck-Kolmogorov equation or by the use of Ito’s differential rule
permitting to reduce the analysis of stability of solutions of stochastic differential equations
to the analysis of the stability of deterministic differential equations describing the evolution
of the moment functions. For the purpose of stability analysis, we consider the effect of the
random parametric excitation on the stability of trivial solutions of system (2) when the
frequency of the harmonic component falls within the region of combination parametric

resonance, i.e. 2v=®, + @, , i, k=1,2, ..., n, iZk.
Considering the case of parametric resonance, i.e. when p, = @), , and setting
2 2
w; =p; +EA,, 3)

where £4 denotes the amount of detuning; equation (2) may be rewritten as
n n n
G, +pig =—€ ZZﬂ,-jq'j +Aq + @ Zhijqj sin 2vt —81/2a),-2f(z)2k,.jqj, i=1,..,n. 4)
j=1 =1 j=1

Transforming to new variables z;, and y; by the relation
q;(t) =z cos pjt+y;sinpit,  ¢;(t)=—p;[zsin pt—y;cos pit], i=1,...n, 5)
And

. 1. 2 . . 1. 2 .
3= __(%‘ + p; qi)sm pit, Vi :;(% + p; qi)cos pit, i=L..n 6)

i i
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We consider that the frequencies of resonance oscillations satisfy the relation p;+p;=2v,

i, k=1, ..., n, i# k. The system of equations (4) may be replaced by the n-pairs of first-order
equations, using the relations (5) and (6):

. L ST . A, . . ?

4= 8{—22@7 —J(zj sin pjt—y; cos p;t)sin p;t +—=(z; cos p;t + y; sin p;t)sin p1+——x

j= i i i

(7a)

n n
leh (z cos pt+y;sinp;t )smp tsin2vt [+ &2 o Zlklj(zjcospjt+yjsmpjt)smpit,
J= i J=

A w?
= E{ZZ,BU (z sin p ¢~y cos pjt)cospit——’(zi cos p;t+ y; sin p;t)cos p ;t ———X

i i i

n
XZhij(zj cosp;t+y; sinpjt)cosp[tsin2vt -
j=1
n
. t)Zkij(zjcospjt+yjsinpjt)cospit. (7b)
i j=1
We assume that the oscillation frequencies of the n-degrees-of-freedom systems are
commensurable, i.e., n;p;=n;p;, where n; and n, are integers (i, k =1, 2, ..., n, i#zk). We can
easily show that the fluctuation in two different degrees of freedom have a common period
T= n; T, + niT;, where T;=27t/p;, and it is possible to directly apply the Stratonovich—
Khasminskii theory to standard systems of equations in view of the periodicity of the
deterministic functions [9].
When applying on system (7) the averaging principle of Krelov — Bogolyubov and the
Stratonovich — Khasminskii theory [9], it leads to the following homogenous It6 equations:

n
G=m, +Y (0, dw,y+0,, dwy;), (8)
j=1

n
yi=my + Zi(o—y‘zfdwzj_l + O-ylydeZj ), i=12,..,n,
where w(t) are independent Wiener processes of unit intensity and

2
m, :eﬂ B+ ké’ [S(Zpi)—S(O)ﬂzﬁLA—i w’ ”‘P (2p; } +a)Z—z +
i pl

8 _]¢l

k;tz Jj#k

+— Za)a)ka,kkkj ([ 2v) - 55(517;/()}2/+[_T(2v)+‘3}j\y(apik)]yj)};

2

Zki% A, Zkii S htj
m, =€ —f; + @ ?[5(217;)—5(0)] YTy, @ = P2p)|a-o Xy +

i 8 e 4

wakzk,kkk, ([ 2v) - 5lP(é‘pik)JZj+|:S(2v)_5ii5(5pik):| yj)};

k¢t Jj#k

[aojlz =8%i2 {k,,[ (2pi)z +[S 2p;)+2S( )]yiz}_'_

i <
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+sz’/ ’I(I: 2v +9; S(gpﬂ)]'[zjzl+ijlJ)};

VEIRES

(o0 ] e 2 (2[5 2o+ 25(0]) +52n) 7]+

+22ku ,([ 2v) +51S(5pu)].[zjzl+ym})};

J#Ei £

[O-O-T:I wyi= |:O-O-T:| Vs _g%izkl%‘g(o) ZiYis

|:O—O-Tj| zlzk= |:O—O—Tj| % = a)a)k {2k kkk (O) Vi Yk +

+ Z zkukkz [{ )= 36, (O py )}Z 21 {5(2")"‘ 39S (S i )} iy J}

J#il#k

|:O'O'T:| o= I:O'O'T:I o= e%{ZkﬁkkkS (0)z;z; +

+ Z zkukkz [{ (2v)+ 0k 0;S (Opy )} ;g "‘{S (2v)- 5jk51i5(5pik )} Yy J}’

J#il#k

[O'O'T] = I:O'O'T:I =€ a)i;)" {=2k;k; S (0) 2, y; +

+ Z zkukkz [{ 5;k5115 (Opy )}Zly { (2") + 5jk51i5(5pik )}Zj)’z ]}’

J#il#k

I:O-O-T] YiZk = I:O-O-T:I Zk) l k { 2kttkkkS (0) i Vi +

+zqukk,[{ )= 36,8 (5pik)}zjy,—{S(Zv)+§jk5ﬁ5(5pik)}Z,yj]};

Jj#il#k
Py =p;,—Pr.» Lk=L2,..n,
ik
and é‘lj is the Kronecker Delta defined by

0 for i#j;
1 for i=j.

o)

i

Here S(@) and (@) denote, respectively, the cosine and sine power spectral densities of the
stochastic process f(f) defined by
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S(w)+iy(w)= Z]iE[f(t)f(t +7)]e’"dr.
0

3. Stability analysis.

The general procedure of solving stochastic stability problems are given in Ref. [5]. The
mathematical aspects of the theory of stochastic stability are introduced in Ref. [11]. In this
paper the boundaries of instability regions of system (2), for n=2, are investigated using the
method of moment functions [22]. The later method permits one to reduce the analysis of
stability of solutions of stochastic differential equations to the analysis of the stability of
deterministic differential equations describing the evolution of the moment functions. The
basic equations of the method of moments are deduced by a termwise integration of the
Fokker — Planck — Kolmogorov equation [5].

The coupled two-degrees-of-freedom system considered in this section has the form

q, +2g(ﬁné]1 +ﬁ12‘?2)+ w12511 + a)lz(hnﬁh + hn‘]z)gsmz"t"‘gl/zwlz(knﬁh + k129, )f(t):(),

iy + 26(Bory + Pty )+ @20, + @ (s + oy e sin2vt + €720 (kyy g, + ey ) £(£) =0,
€))
The stability of system of equations (9) in probability was investigated in Ref. [18],

where explicit expressions for the stability boundaries were deduced using Khasminkii’s
formulation. System (9) in the extended phase space is equivalent to 1t6’s system of stochas-

tic equations for the four-dimensional process X (t ) =(21,Y1529,Y,) with the following
components deduced from the system of equations (8)

2
G=m, +Y (0, dw,y+0,, dwy), (10)
j=1

2
yi=my +, l(o-ylzjdwli—l +O-yly,»dW2j)’ i=12,
=

where w; — are independent Wiener processes of unit intensity and

A h
m, :g|:(_'611+d1)z1+(2_1_d2]y1+w1%22:|,

P

_ " A
m, =¢€ 6027121+(—ﬂ22+d3)22+ _22 —dy |y,
D2 i

A By |
m, =¢& _(_1_612]11+(_ﬁ11+d1))’1_a’1£)’2

4

A
my, =8{—%@M_[2_2_d4]12"‘(‘ﬂzz"“%)h}’
P2

2
bzlzl = [GGT] zlzl= 8%[k121 (S(zpl)zlz +CZ y12)+k122C1 (Z% + y; )j|’

128



2
by, = [GGTJM = 8%[’6121 (e 27 +5(2py) 37 ) +kirey (23 + v3 )}

2
bZZZZ =[06T]z2z2 =g%[kzzlcl (212 +ylz)+k222 (S(sz)zg +c5 y% )],

iyl
sl
&

I
1
S)

.
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—_—~~
o
~
2
<
[\ ]
I
Q
i
=
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2
by,y, =[O_GT]},Z},Z = 8&["22101 (112 + J’12)+k222 (Ca % +S(2P2)Y§)]

8
T T @ >
b,,, :[0'0' ]zzyz :[0'0' ]yzzz :—ngzzS(O)zzyz,
_ T _ T _ 0w _
byIZZ _|:O-O- :IyIZZ _I:O-O- :Izzyl =€ 8 (C4Z2y1 CSyZZl)7

S

Y N _.9
by, _[O_O_ ]ylyz _[GO_ ]yz)n =& (5720 +e4m¥2),

d, =%{ ok [S(2p)) =S (0) ]+ @k [5(20) =S (8p1,) T}
& == @R (2,) + @ykiokes [ ¥ (20) -9 (8710 )
dy =2 atkiaky [ 5 (20)=5 (8pi) ]+ 02k, [ 5 (20,) -5 (0)]}
d, =%{ Bkpoky, [ ¥ (20)+ ¥ (Spyy) |+ @k3 ¥ (2p, )}
o =S(20)+5(8p), ¢ =5(2p)+25(0), c5=S(2p,)+25(0),

¢y =kyoky, [S (2v)-S(pi> )J’

¢s = kpkyy [S (2v)+S(dpiy )J"‘ 2ky kS (0), Opip = py = pa-

For convenience, we denoted the amplitudes z;, yy, 22, 2 by X1, Xa, X3, X4, respectively.
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The vector X (t)z (xl,xz,x3, x4) describes the diffusion Markov process. Its joint
probability density p(X, f) is defined as the solution of the Fokker — Planck — Kolmogorov
equation [22]. The problem is reduced to the analysis of the trivial solutions of system (10)
of Markov type.

Not going beyond the scope of the correlation theory, we require, that the second
moments of the coordinates and velocities remain restricted at f — oo .

Let's consider a set of moment functions of the second order of vector process X (l‘)
my (1) =(x; () x (1)) (jk=1,2.3,4). (11)

By formulating the equation with respect to mjy, we obtain a system of deterministic dif-
ferential equations

dm;
#:ij (myys gy omyy) (G k=1,2,3,4). (12)
Here
T Top(x.r) .
F, = I J. ijxkdxldxzdx3dx4, (j.k=1,2,3,4). (13)

—oo —oo

The joint probability density p(X, ) of the process X(7) satisfies the Fokker — Planck —
Kolmogorov equation

0 A h J
a_pzz(ﬂ11+ﬁ22)l7+ (Bi+d)x —| ———d, |x, - =2 x 2, (14)
t 2p, 4 ox,

A h )
+{(_1_d2}61 +(B +d))x, +a’1;2x4}_p+
2p 4

+ —a)zhxl+(ﬂ22+d3)x3— i_d4 Xy 8_p+
4 2p, ox;

+{a)2@x2 +[i—d4]x3 +( B, +d3)x4}aa_p+

4 2p, X4
9? 0? 09? 09?
*t3 bzlz] 12) +b)’1)’1 IZ +b1212 12) +b)’2)’2 IZ +
2 ox, ox, ox; oxy
’p ’p ’p C ’p ’p
W oxdx, % Oxdx; P oxdx, P dxndx; 77 oxpdx, 27 Oxgdxy '

The substitution of (14) and (13) into (12) leads to a set of linear differential equations,
that may be expressed in a matrix form as

d—mzeAm, (15)
dt

where

_ T
m = [my, My, , M3, My, My s My, Moy, Mgy, My My, |

130



The nonzero elements a; of the matrix A are:

ajy=dass =2(=fy +E), ap=2(-p,+E),
a3y = Gyy = ags = ayy = (B + By ) +2E5,
a gg=dyp1p =2(—,322 +E5), a g9= 2(_:322 +E4)9

| I S _ A
Sy ==y = lys = U3 = yg = =05y = —Agy =~y = ———d,,
2 2 2py

_ _ _ 1 _ _ 1 A
A3y =—043 = U7 = =075 = dgg = —lgg = dgjg =~ Uyo9 = —dy,
2 2 2p,

1 _ _ _ _ _ 1 _ _ _ hyy
T3 = Tl = Apg = A3y = A9 = sy = —Agg = —A790 = O — =,

2 2 4

hy,

a =-—a =da =-—a =—a. =a = —q, =——a —

31 42 = dep 75 83 = oy 96 107 = @ )

2 2 4

2 2

_ . _Y o _ _w
s =dsy =——k{1¢y,  dgyg =05 =—kC3,
8 8
2 2
_ _ _ _9 s _ _ _ _w
a3 = djjp = dsg = dsjg __8 ke, agy =ags = ay; = dyos __8 kycps
Q37 =046 = —Agq =73 = _8 Cs,

where

E, =%(qkﬁ Bs(zpl)—S(O)}@QJ, £, = ok [5(2)) 25 (0) ]+ 0ye, ).
By = (@3 [5(20) =3 (0)]+ @34 [ (20) -5 (0) [+ 30,0c, ).

E, =%(a)2k222[S(sz)—ZS(O)]+wlc4), Es =%(wzk§2 BS(ZPZ)—S(O)}HUM}

The system of differential equations (15) can be found by applying It6’s differential rule
[16] to the quantities x;-x; (j, k=1, 2, 3, 4). The system of differential equations (9) in Ref.

[16], should have the form divV =2¢£-A-W , which is the same as the system of equations
t

(15) presented above, and the correct expressions of the following elements of the matrix A

() h . - e
are: ajy =—dg5 = —dsg =dy7 = 2es, any=—, % ; also the first stability condition in Eq.

16
(8) and in Eq. (17), in Ref. [16], should be JB;+ B, >d;+d; and pj+ By >0,

respectively.
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In the following we consider the case, when the function f{(¢) is a white noise process of
small intensity, then

S(2p;)=S(8p;)=5(0) =S, =constant, and ¥(2p;) =¥(5p;,)=0 (i=12).

3.1. Asymptotic stability criteria. The asymptotic stability of the system of differential
equations (15) is completely determined by the character of the roots of the characteristic
equation

p(1)=det(A - A1)=0, (16)

where the matrix A is defined in (15), I — the matrix unit, and A,, 4,, ..., 4, are the roots of
the characteristic equation (16).

According to Liapunov’s theorems (the stability and instability theorems of the first ap-
proximation) [6, 19], the equilibrium of system (15) is asymptotically stable, if all roots of
the characteristic equation (16) have negative real parts; and the equilibrium of system (15)
is instable, if amongst the roots of the characteristic equation (16) there is at least one with a
positive real part.

We consider the algebraic polynomial (16) with constant coefficients. Let the left hand-
side of Eq. (16) be given in a polynomial form

P(A) = poA' " + A + DA + P A + DA+ D5 + DAt + Do A7 + P AR + Do+ Py - (17)

The necessary condition for negative real parts of all roots of the polynomial equation
(17) is that all its coefficients be positive [6], i.e.

2. >0, (k=0,1,2,..,10). (18)

From the coefficients of the polynomial p(1) we construct Hurwitz matrix H,, of order 10

PPy Ps P P 0O 0 0 0 0
Py P Ps Pe Ps Pp O 0 0 0
O p ps Ps P» o 0 0 0 O
0 Py P, P4 P Ps P O 0 O
O A A LB (19)
0 O p, P, Ps D¢ Ps P O 0
0 0 0 p ps ps P Py 0 O
0 0 O py, P, Py Ps Ps P O
0 0 0 O p p3s Ps P Py O
100 0 0 py P, Py Ps Ps Do

The necessary and sufficient condition for the polynomial p(A) to have all roots with
negative real parts is that all the principal diagonal minors of the matrix H;y be positive
(Routh — Hurwitz conditions), i.e.,

A =p, >0,
Zz = }_71 63 >09

Po D2 > (20)
A, = PiAy >0.
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3.2. Expressions for the boundaries of the instability regions. Making use of the
aforementioned instability theorem, which says, that the equilibrium of system (15) is
instable if amongst the roots of the characteristic equation (16) there is at least one with a
positive real part, boundaries of the instability regions (in different planes) are constructed
numerically. In addition, verifications of the signs of the principal diagonal minors of (20)

and the sign of the secular term p,, of (18) are carried out. It is found, that the boundaries of
the instability regions, computed numerically, correspond to the case, when the secular term
D, of the polynomial equation (16) equals to zero, i.e.

P10 =0. 21)

From condition (21), analytical expressions for the boundaries of the instability regions
are obtained.

The analytical expression, relating ki, to hy;, f=51=f» and the system parameters, has

the form
1 _ e e—

- 250k221a)1w2

where
ay = (/‘121“’12 +k222a)§)S0 -84
by ={ (klzlwlz +20,0,k 5k, +k222a)22)S0 _Sﬂ}{(klzlwlz =20y, ky5ky, +k2220)22)50 —Sﬂ} ;
by = 45,k3, (a’la’zk221 (ki ik +kioksy ) S +8,3)><

X{ (k121k222 _klzzkzzl)(wlwzso)z _4ﬂ(k121w12 +k222w22)50 "‘1652} :

The boundaries of the instability regions in (h;;, h1»)-plane, computed analytically using
relation (22) and numerically, are shown in Figs. 3 and 4 for different values of the parame-

ter .

h/z ‘ . .
Instability region
772979797774
8
w/ =/
6f Wp=2
Sp=01
4
A=a9
2 az
as
0 = 1 I 1
g 2 4 6 8 hyy

Fig. 3. Boundaries of the instability regions for k;;= ky;=1, kjp= ky;=1.

133



h
2 Instability region
PIIIFIIYIIII4
8 -
=1
6 Wp=2
Sp=01
4 -~
p=09
- az
2 as
D 1 | 1 1
o z 4 6 g8 h

Fig. 4. Boundaries of the instability regions for k;;= k;;=0, k= ko1=1.
From the above presented figures, we see that there is a good agreement between the
analytical and numerical results.
The analytical expression, relating h=h,=h,, to f=0,,=, and the system parameters,
has the form

hzz\/(SﬁJrgl)(ﬁ—gz)(ﬁ—gs)’ 23)
200, (8- 84)

which is valid for > g, . Here

8 =W, (kllkzz +koky, )So’

S

8 :?}((wlkn)z +(@,ky, ) + \/ [(a)lkll)2 ~(@5ks, )2]2 * [2w1w2k12k21 2 j

83 = %((a)lkn )2 +(@.ky, ) _\/ [(a)lkn)z —(0,k,, )2]2 + [2(01(02/(12](21 2 J ,

84 ZST;[(w1k11)2 + (w2k22)2 - w1w2(k122 + kzzl)]’

and it may be remarked from the above presented expressions that g, > g,, g, > g5, then

S > g, . The boundaries of the instability regions in (f3, h)-plane, computed analytically

using relation (23) and numerically, are shown in Figs. 5 and 6 for different values of the
parameter Sj.

Instability region

5F paassssasave

4r =1
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Fig. 5. Boundaries of the instability regions for k; ;= k=1, kj,= ky;=1.
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Fig. 6. Boundaries of the instability regions for k; = k=0, k;,= ky;=1.

From the above presented figures, we also see that there is a good agreement between
the analytical and numerical results.

Finally, the analytical expression, relating i, to [, h=h;;=hy; and the system
parameters, has the form

1
ﬁl :—32ﬂ |:a()1522 +alﬂ2 +a, +\/b0ﬁ24 +b1ﬁ23 +b2,322 +b3,52 +b4:|, (24)
2

where

Bi=B, B=Ppn. ay=-16, a =4w,w0,k,k,S,. a,= w1w2h2’
by =256, b, =—1280,0,kk,S,. by =160,0,(2h% + @,0, (ky ks, S, ) ).

by = 2(2&)1602}1)2 kiky Sy, by = (wlwzhz)z-

We note that relation (24) is valid for the cases, when the coefficients k;;=k»,=0.

The boundaries of the instability regions in (5, £y)-plane, computed analytically using
relation (24), and numerically, are illustrated in an example in the following section.

4. Application.

As an application the flexural-tortional vibration of a simply supported, uniform, nar-
row, rectangular, elastic beam of length L is considered. The beam is subjected to a dynami-
cal concentrated load P(¢) acting at the centre of the beam cross-section in a non-follower
fashion as shown in Fig. 1. The differential equations describing the motion [23] of the lat-
eral deflection u(#) and the angle of twist €(¢) are:

'y 0° (M 0) 0%u ou
e

El,—- +D,— =0, 25
ozt dz* o> "ot (25)
20 oM ‘u oM 2
—Gla—f+—"a—u Xa—g+—z+mrza—2€+ 68_19:0’
0z Jz 0z 0z 0z ot ot
where
le, OSleL; lPum—lpu, 05zle;
M= f 1 P 21 21 1 ’
—P(L-z), —L<z<L; -—Pu, +—Pu,  —L<z<IL;
2 2 2 2 2
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EI, and GJ denote, respectively, the flexural and tortional rigidities of the cross section, D,

and Dy are the viscous damping coefficients, m is the mass per unit length, and 7 is the polar
radius of gyration of the cross-section. Here the subscript “m” denotes the value of the

midspan z=L/2.
The conditions of simply supported at the ends imply the following boundary

conditions:

2 2
u(o,z):u(L,z):g—”;(o,z):g—‘;(L,z):o, 0(0,1)=8O(L,1)=0. 26)
Z Z

For simply supported ends, the mode shapes may be assumed as
_ . 7 _ .7
u(z,t)=¢q smzz, 0(z,t)=1q, smzz, 27)
in which g, =u,, =u(L/2,t), g, =6, =6(L/2,t). Substituting (27) into equations (25),
then multiplying by sin (71' z / 2), and integrating with respect to z from 0 to L we obtain

L ¢ . . £9* (M .6
[| £1, (Zj g, +mi, +D, G, sinzfzdz+j—2")sinfzdz =0,
0 L L o 0z L

k Y _ - .. 5 oM, ou u oM. . &
{{GJ[LJ G +mr*g, + Dy, smzzzdz+£ % a—Z+MX¥+ azé smzzdz =0. (28)

Taking into account the boundary conditions (26) and Eqs. (27), the following terms of
(28) are evaluated using integration by parts as follows:

L3 (M .6 2L
0 0z L L)% L

22 p (L2 T L T 1
:_[Zj qu J. zsinzzzdz+ j (L—z)sinzzzdz =—E(4+”2)P§2?

0 L2
L 2 L
J. aan_“+an—'2’ sin 2~ zdz =—(£ijxa—ucos£zdz =
o\ 9z 0z 0z L L)y "0z L

T 2 P L2 T L T 1
=_[_j Pl _[ zcos® = zdz + _[ (L-z)cos* = zdz =——(—4+752)P§1;
L) 2% LT, L 16

T
0
L/2 L
=z fﬁl J. 1—sinﬂ cosﬂdz—i-_[ —1+sinﬂ cosﬂdz :—qul.
L L L L 2

L)2"

Hence, equations (28) become [23]

4

- - T _ 1 _
mgq, + D, q, + Ely(zj q, —§(4+ 7[2)Pq2 =0,
(29)

2
R - T\ — 1 2 \p=
mr°q, + D,q, + GJ| — ——\W4+7°)Pg, =0.
q; 042 (Lj q; SL( ) 9,

Let g, =—rq,, q, =7Yq,.Eq.(29) may be written in the form
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G +2eBq + o7 [+ 8(1)q, | =0, G, +26B,0, + 5[ g, +8(t)q |=0,  (30)
where
SmrLw ,w
g(t)_ P(l) _ mr. 12 Dg

D
=—+*, P, = , 2e0,=—", 2¢06,= ,
P, i4+7tzj "om P omr?

2 EIy V4 ¢ 2 GJ V4 g wl
a)l = —_ s a)2 = 2 —_ s }/:—
m \ L mr- \ L w,

In most cases, the excitation g(#) consists of a harmonic term on which a stochastic fluc-
tuation is superposed. Hence the function g(r) may have the form g(7) =&h sin2vt +

+eV2kf (¢) . Thus, the system of equations (30) becomes

Gy +26B4, + @1 g, +&hay sin2vi+£Vkf (1) g, | = 0;
(31)
Gy +26Bydy + W3] g + € hg sin2vi+K (1) g, |=0.
For system (9), the coefficients of (31) take the form
Bi=B. Pn=5. Bo=Fi=hy=hy=ky=ky=0, hy=hy=h kjp=ky=k.

The boundaries of the instability regions of system (31) in the (f,, £))-plane, computed
analytically using Eq. (24) and numerically, are shown in Figs. 7 and 8 for different values
of the parameter /.

s ccican
Instability region

1 2 3 P

Instability region

1 2 3 4 B
Fig. 8. Boundaries of the instability regions for k= 0.5.

We conclude from the above presented figures, that there is a good agreement between
the analytical and numerical results.
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5. Conclusion.

A method for investigating the stability of a class of coupled two-degrees-of-freedom
systems, subjected to parametric excitation by a harmonic action superimposed by an er-
godic stochastic process, has been presented. Explicit expressions for the stability of the
second moments are obtained from the secular term of the characteristic equation. There is
good agreement between the analytical and numerical results. The method has been
successfully applied to an elastic structural element, showing the feasibility of this approach,
valid in the first approximation, to realistic engineering structures.

PE3IOME. JlociimkeHO QUHAMIYHY CTIMKICTh 3B’S3aHOI CUCTEMH 3 JBOMa CTEIEHSIMH CBOOOJH,
30yIKeHOl apaMeTpUIHO FApMOHIYHOIO JIi€l0, HAKJIAJICHO Ha eprofMYHHUI CTOXaCTUYHUHU mporec. B aHa-
JTi3i CTIMKOCTI BUKOPHCTAHO METOA MOMEHTHUX (yHKIiH. OTpHMaHO SBHI BHpa3H MO0 CTIHKOCTI APyrux
MOMEHTIB, KOJIM 4aCTOTa FapMOHIYHOTO 30Y/XKCHHS JIGKUTh B OKOJII KOMOIHALIITHOT CyMH BJIACHUX YacTOT.
OTpuMaHO J00pe Y3ro[DKEHHS aHANITUYHUX 1 YMCIOBHX pe3ysbTaTiB. SIK MPHKIAJ, PO3MISHYTO CTIHKICTh
MONEPEYHHUX MPOTHHIB PE3MHOBOI OaJIKK MPH AUHAMIYHOMY 30y DKEHHI.
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