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Abstract: The generalized form of the principle of virtual work is obtained, when the
virtual work is considered as a time integral of virtual power. The corresponding this form
Euler — Lagrange equation includes the divergence of the Lie derivative of stress. So, the
equation of motion on the stress rate field is one of the results of this paper. When bying
studied the third order wave, a generalization of the acoustic tensor is obtained. The general-
ized acoustic tensor seems the most important result of these paper. This one can also be
found by investigating the acceleration wave.
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Introduction.

The investigation of the third order wave necessitates the knowledge of the dynamical
compatibility equation. This equation rises from the first equation of motion in case of the
acceleration wave. Now it needs the time derivative of the first equation of motion. The ma-
terial time derivative isn't simple in the current configuration. Using the principle of virtual
power, namely the principle of virtual work, the derivative will be obvious and indisputable.
We assume that the integral of the virtual power with respect to time is the virtual work.
Hence, from the principle of virtual work the time derivative of the first equation of motion
can be obtained and then the dynamical compatibility equation can be calculated. The time
derivative of the first equation of motion will be called the equation of motion on the stress
rate field. Many authors have dealt with this question when the body was in equilibrium [8,
9, 10]. The third order wave can be investigated by using the compatibility equations (dy-
namic, kinematic and constitutive). When the constitutive equation is a system of first order
nonlinear partial differential equations the investigation of wave propagation is more con-
venient by use of the third order wave.

1. The principle of virtual work.

In continuum mechanics, the principle of virtual power is writing as follows

[vidv = [g*viav + [ prvida, (1)
\%4 \4

Aﬁ

where tkl,v;:,vz;l and qk denote the Cauchy stress, the virtual velocity, the virtual velocity
gradient and the difference between the body force and the force of inertia in domain V',

respectively, and ﬁk is the surface force on boundary surface A, (A=A, +A, , the ve-
locity ¥ is known on A).
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The stress tensor in the satisfies the second Cauchy equation of motion, that is,
Ko Ik
=t

Assume as a starting point that the integral of the power for a given period [tl,tz]

means the work during this period. Thus, the integrated with respect to time ¢ equation (1)
gives

) ) )
[[#*visdvar = [ [ q*vidvae + [ [ p*vidAdt. 2)
v

t nv 1A,

As it can be seen, the virtual deformation rate v;; on the left hand side of the equation
has been replaced with virtual velocity gradient VZ. ;- This replacement leaves the product

t v,, unchanged since ¢ “ =¢". The material time derivative of the deformation gradient
is

<k k P
)C’K—V;pX’K.
Then
kK -k K
v;p_x,KX,p‘ )

With displacement vector # used ¥ = R +u and the derivatives with respect to time

K . ..
and X © are written in indexed form as

k_ -k . _ -k .
Vi =u and X g =Xy Sk

respectively, the formula (3) becomes
k o_ ok yK _ -k
v, =X =u,. 4)

With the volume integral on the left hand side of (2) transformed to the initial configu-
ration, the integrals with respect to time and over volume V can be interchanged

jrft,iu*k:,(x’{,i dtdV, = j]i T A
V, 1 Vot

- = dv
+[ [T Mg x| drdAg; T =——. (5)
A; [1 o
Consider now the integrals with respect to time, one after the other:
123 _ 123 _ _
[T X", ™ dr= j[(} i XK ) = (T o X5, Juy ] dr

f f
The first integral can be calculated from time #; to 7, on the right hand side
53

t _ L

[T 6 x5, ™ dtz(]t,l(u*lfl)t — [T (67 v, 40 =g vn) X
1

f g

g dt. (6):

After similar transformations, the first integral with respect to time on the right hand
side of (5) is as follows:
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tjzf q‘uy dr=(1q"; )Z —tff (" +v'. ¢") uy . (6),
1

] ]

Here again the virtual displacement are not vanishing u;: #0 at time ¢ and t, in

©), .
Finally, after transformation of the second integral on the right hand side of (5)

o _ . B ‘

[T X5 upde= (T X K ) = [T (170 + 87 =2 ) X5 ug dr. (6),
: 1), ; a) X

ut t

With (6), , , substituted into (5) and after proper rearrangement, the equation of virtual

work is [1]

_H(ikp _ kg Vp;q‘l'tkp Vs;s)u*k;p dth:_J[(tll;cl +51k)’4;]i2 dV"‘_[ [(ﬁk —tkln/)MZJ'ZdA"’
1

v v Ay |

e+ at v v | [ (P +t =008, i d,

v A,
Therefore
t ,i; ,+¢q, =0 is the first Cauchy equation of motion, p*=r"n , is the dynamic
boundary conditionon A .
The principle of virtual work is as follows
)
[ (¥ =t avr +87v )i, av de =
iV
4 |
=[[(d" +q" vy )uyave+ [ [ (i% =0, +07 v Y u'y dAdr 7

1V fo A,

Equation (7) refers to continua and its any part. Otherwise, on the basis of what has
been said above, the equation given below is obtained after suitable mathematical transfor-
mation

Ly (tij);j + (t"fvi;h +1", );j +q +gv, =p i (8)

supposing that the Cauchy equations of motion and the boundary condition are satisfied.
Here Lv (t ”) denotes the Lie derivative of Cauchy’s stress tensor, that is,
)=t =" = "

qk is the body force density; O is the mass density and satisfies the continuity equation.
Equation (8) is the equation of motion on the stress rate (or Lie derivative of stress)
field, [8, 9, 10, 12].
2. The third order wave.

. . k Lk ) L .
When the basic quantities V" ,#" ,a,, and the first derivatives of them are continuous,
but the second derivatives have a jump by crossing surface ¢(xk , )= 0, we speak about
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the third order waves [2]. Let us denote the jump of some quantity vlfp by <vkp> When the
velocity gradient is vk; » in case of the wave of order three <v’fp> =0, but <vlqu> #0. Thus

in (9) <LV (tkp )> =0, but <Lv (tkp );q> #0 and so on.

Now the dynamic condition of the third order wave is

(), )+ 1m0+ 900 )= o (5%). (10

Let the kinematic equation [4, 5] be
(a))=dy+(av, + )ty gt +ag k)W +
Ly (Ly (a; ) = dy +{ayv; +agv™,; A T AV i TAgY g )V

. k ko)l
+(aﬂ +agvt g tayy ;i)v g

When the Lie derivative of the velocity field is L,, , expression L, =£, +§ in(10)isa
t

generalization of the velocity [3]. The Euler strain tensor is ;. As it is well known

L, (aij) =V, for the strain rate , thus the kinematic compatibility condition of the third or-

der wave is
(v,)=(d,)+a, (i) +a, (v';) (11)

namely

Ly (Ly (a5)) = Ly (vy) = vy + o' + v

It can easily be shown that vk;i # (vk;i ). , but <1';k;l.> = <(vk;i ).> and this property is the

same for the second derivatives of all other functions.
Let the constitutive equation be

fa(["Vz(tij)’LV (tij) ’tij;kh’l‘Vz (apq)’l‘V (apq);,’apq:rs’l“/ (qu),qu;,,tif,apq,qu) =0,(12)

sk
a=1,2,3,4,5,6.

where va =L, (Lv ()) . The equations contain the second order derivatives with respect to

space and time, hence they are called the second order constitutive equations. The constitu-
tive compatibility conditions can be obtained from equation (12) by calculation after and
before the wave front.

fa(va(tif)+<va(t"j)>,....,Lv (apq ) +<LV (a,,q );r>,...,qu)— fa(va(t"f),....,qu): 0
(13)

Notation < > means the jump across the wavefront, for example

2\ (02, ,00Y (00,00 5, 90 3 ., 09
<LV (tj)>—}/j(at+vl axpj - E‘l‘vpaxip /ll‘pjaxip‘l‘ﬂjtqaxiq
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or

_~ 99 09
<apq;rs> =0, o I and so on.

The system (13) is the system of first order partial differential equations. Using the
characteristic equation of (13), the constitutive compatibility condition is obtained in form

af—“q)h =0,.., i =1,2,3,4, (14)
9@,

where qof:a—(e i %=a—¢;.
axl at ax

In the following we use Cartesian coordinates. When the jumps in the second deriva-
tives of the stress, strain tensors and the velocity on the surface (o(xk ,t): 0 are denoted by

;/j, a’,j,/lk , the unit normal vector of the wavefront is introduced

9
K

X
ox? ol

and the wave propagation velocity is denoted

ny

C=c- vknk s
the equations (10), (11) and (14) lead to the dynamic
Pl =—p CA*; (15)

kinematic

a; =%[”i(2akj_gkj)+”j(zaik_g;k)}lk (16)

and the constitutive compatibility equations [2 , 4]
8 i1aC? = S m C + S i ' mymy ) + @0, ( S, C* — E,Pn,C + Enon ) +
aij4 aij "'k k"l Pq a 4 a r oAU

aij

r 1 k ij
+A. ([Sapqm’q, ~E,A,, —EWU,”’14G,M)C — Sy T+

pgs
+E a Arpqs

1
+5Wa’7qknkGrpqu =0. (17

Here the notations are used:

afa . k _ afa . afa

() Tan (), M e
) - afﬂl . pqr — afﬂl . pars _ afﬂl .
Fa aLV2 (apq) e dLy (apq).r, e aapqm ’
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qu4: afa : quk: afa :
al’V (qu) aqu;k

Apijt/ = apinjnq +aiqnjnp ’ Gpijq = gpinjnq + giqnjnp ’

T"j=t"ngn;+t"ng"n,,

. 2. . .
where g and 8" are the metric tensors and L, " is the second order Lie derivative.
Substituting (15) and (16) into (17) we can write the wave propagation equation for the

stress amplitude ¥/ = ¥/ ~ ¥
{2p8,,C* -2pS,,C* +B,,C* +D,,C+H , }y* =0, (18)

where the following notations were used:

. N — k .
Sap = Sapiiyes Sap = Sapti) s

kh p p
Baﬁ = 2p Saﬂ nny, + Eal q4GP,3(if)q - ZSapq4T1qﬂ +Wapq4Gpﬂ(lj)q;

D,y ==E,""n,G 51, +2S s T ) =W, n,G 5

o o r s ij)g’

_ o pars
Ha/i‘ =E, " n.n, (2Ap/5‘(ij)q - Gﬁﬁ’(ij)q )

The int tation of index B is: (..) (), if i=Js
€ Interpretation of 1Index p 1s: \... ﬁ(ij)= 2( ) lf iz i
[ J-
i+ j+1

The determinant of the matrix in bracket { } in (18) is zero, because 7ﬁ is not zero

det{ }=0.
This is the equation of the propagation of the third order wave, being the 24-th order al-

gebraical equation for the propagation velocity C. Matrix {} can be considered as the

characteristic matrix (6x6) of a generalization of the acoustic tensor.
The matrix of acoustic tensor can be obtained from (18). Let us denote the coefficients

of C in the form of 6x6 matrices by S,§,B,D,H. The the acoustic matrix
SC*+SC*+BC*+DC+H (19)

gives the wave propagation, if it is multiplied by ¥ and set equal to zero
(SC*+SC*+BC*+DC+H)y=0.

The most general acoustic tensor can be obtained from (19), when the coefficients of
C*,C?,C*,C and C’have been denoted in form of 6x6 matrices S,S,B,D,H. By

introducting the inverse S~ and unit matrices I , the wave propagation equation [6, 7] is
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0 I 0 0 Y

0 0 I 0 : :
y** = C Y**

0 0 0 I (v v

S'T™H S'D S'B S'S|y™ 7
Now the generalized acoustic matrix can be written [6] in the following form

(C 1 0 0
0 -IC 1 0
0 0 -IC I

S'H S'D S'B S'S-1C

(20)

The elements of the acoustic matrix are 6x6 matrices and the final matrix is 24x24.

3. Two special cases.
i). Let H and D be identical to zero; then equation (18) is

" {2psc? - 2pS C+Bly=0.

We can designate such bodies as the quasi-viscoelastic bodies.
ii). Let us write the one dimensional form of equation (18)

20(£6,C* = 15,C%)+ (2015, + 1o, =205, + £, )C*+
H(~fo, +20f0, £, )C+ 12, J7=0, @1

where notations are as usual: stress O, strain £, velocity of strain V and subscripts denote
the partial derivatives.

The algebraic equation (21) has at least two positive and negative real roots. The coeffi-
cients of that equation satisfy this condition. Similar conditions can also be supposed to the
equation (18).

These conditions for the material coefficients enable us to approximate the constitutive
equations, when the suitable experiments are performed.

PE3IOME. Ortpumano y3araibHEHUH MPUHIMIT BIPTYaJIIbHUX 3MillEHb, KOJIU BIPTYyaJlbHi 3MILIICHHS
PO3IIILAAIOThCS K IHTErpall 1o Yacy Bij BipTyanbHOI eHeprii. PiBrsuus Eiinepa-Jlarpamxa qaroTs piBHAHHSL
I quBepreHnii moxinHoi JIi mo HampykeHHsAX. PiBHAHHA pyXy B TepMiHaX IIOJS IIBHAKOCTI HAIPYXKEHb €
OJTHMM 3 HOBHX pe3yJIbTATIiB 1€l ctaTTi. [Ipy BUBUEHHI XBWIII TPETHOTO MOPSIKY OTPUMAHO y3araJbHEHHS
aKyCTHYHOT'O TEH30pa, SIKe MO)KHA BBa)KaTH HAWOUIBIINM JOCATHEHHSM Y IPOBEICHOMY JociikeHHi. et
pe3ynbTaT MoXKe OyTH OTPUMaHHH TaKOX IIPU JOCIiDKCHHI XBUJI IPUCKOPEHHS.
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