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Abstract: The generalized form of the principle of virtual work is obtained, when the 

virtual work is considered as a time integral of virtual power. The corresponding this form 

Euler – Lagrange equation includes the divergence of the Lie derivative of stress. So, the 

equation of motion on the stress rate field is one of the results of this paper. When bying 

studied the third order wave, a generalization of the acoustic tensor is obtained. The general-

ized acoustic tensor seems the most important result of these paper. This one can also be 

found by investigating the acceleration wave. 
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Introduction. 

The investigation of the third order wave necessitates the knowledge of the dynamical 

compatibility equation. This equation rises from the first equation of motion in case of the 

acceleration wave. Now it needs the time derivative of the first equation of motion. The ma-

terial time derivative isn't simple in the current configuration. Using the principle of virtual 

power, namely the principle of virtual work, the derivative will be obvious and indisputable. 

We assume that the integral of the virtual power with respect to time is the virtual work. 

Hence, from the principle of virtual work the time derivative of the first equation of motion 

can be obtained and then the dynamical compatibility equation can be calculated. The time 

derivative of the first equation of motion will be called the equation of motion on the stress 

rate field. Many authors have dealt with this question when the body was in equilibrium [8, 

9, 10]. The third order wave can be investigated by using the compatibility equations (dy-

namic, kinematic and constitutive). When the constitutive equation is a system of first order 

nonlinear partial differential equations the investigation of wave propagation is more con-

venient by use of the third order wave. 

1. The principle of virtual work. 

In continuum mechanics, the principle of virtual power is writing as follows 

; ,

p
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where ;, ,  and  kl k

k k l
t v v q

∗ ∗  denote the Cauchy stress, the virtual velocity, the virtual velocity 

gradient and the difference between the body force and the force of inertia in domain V , 

respectively, and 
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p~  is the surface force on boundary surface 
p
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locity 
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 is known on A
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). 
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The stress tensor in the satisfies the second Cauchy equation of motion, that is, 

t t
kl lk

= . 

Assume as a starting point that the integral of the power for a given period t t1 2,  

means the work during this period. Thus, the integrated with respect to time t equation (1) 

gives 
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As it can be seen, the virtual deformation rate v
kl

∗

 on the left hand side of the equation 

has been replaced with virtual velocity gradient v
k l; .∗

 This replacement leaves the product 
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 unchanged since t t
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= .  The material time derivative of the deformation gradient 

is 
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With displacement vector u  used r R u= +  and the derivatives with respect to time 

and X
K

 are written in indexed form as 

, ; , :and
k k k k q k

K q K K
v u x u x u= = ≡& & & &  

respectively, the formula (3) becomes 
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With the volume integral on the left hand side of (2) transformed to the initial configu-

ration, the integrals with respect to time and over volume V
o

 can be interchanged 
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Consider now the integrals with respect to time, one after the other: 
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The first integral can be calculated from time t1  to t2  on the right hand side 
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After similar transformations, the first integral with respect to time on the right hand 

side of (5) is as follows: 
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Here again the virtual displacement are not vanishing u
k

∗

≠ 0  at time 1 2 and t t  in 

(6)2 . 

Finally, after transformation of the second integral on the right hand side of (5) 
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With (6)1 2 3, ,  substituted into (5) and after proper rearrangement, the equation of virtual 

work is [1] 
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Therefore 

t q
k l

l

k; + = 0  is the first Cauchy equation of motion, 
k kp

p
p t n=%  is the dynamic 

boundary condition on A
p
. 

The principle of virtual work is as follows 
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Equation (7) refers to continua and its any part. Otherwise, on the basis of what has 

been said above, the equation given below is obtained after suitable mathematical transfor-

mation 
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supposing that the Cauchy equations of motion and the boundary condition are satisfied. 

Here ( )
ij

V
tL  denotes the Lie derivative of Cauchy′s stress tensor, that is,  

( ) h
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h

ihjijij

V
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                                               (9) 

k

q is the body force density; ρ  is the mass density and satisfies the continuity equation. 
Equation (8) is the equation of motion on the stress rate (or Lie derivative of stress) 

field, [8, 9, 10, 12]. 

2. The third order wave. 

When the basic quantities 
kl

klk

atv ,,  and the first derivatives of them are continuous, 

but the second derivatives have a jump by crossing surface ( ) 0, =tx
k

ϕ , we speak about 



 139 

the third order waves [2]. Let us denote the jump of some quantity ;  by
k

p
v ; .k

p
v  When the 

velocity gradient is v
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, in case of the wave of order three ; ;0, but 0.k k
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Now the dynamic condition of the third order wave is 
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Let the kinematic equation [4, 5] be 
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When the Lie derivative of the velocity field is L
V

, expression v£
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L
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 in (10) is a 

generalization of the velocity [3]. The Euler strain tensor is a
ij

. As it is well known 
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L a v= , for the strain rate , thus the kinematic compatibility condition of the third or-

der wave is 
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namely 
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same for the second derivatives of all other functions. 

Let the constitutive equation be 
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where ( )( )
2

..
V V V

L L L≡ . The equations contain the second order derivatives with respect to 

space and time, hence they are called the second order constitutive equations. The constitu-

tive compatibility conditions can be obtained from equation (12) by calculation after and 

before the wave front.  
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Notation  means the jump across the wavefront, for example 
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or  
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%  and so on. 

The system (13) is the system of first order partial differential equations. Using the 

characteristic equation of (13), the constitutive compatibility condition is obtained in form 
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In the following we use Cartesian coordinates. When the jumps in the second deriva-

tives of the stress, strain tensors and the velocity on the surface ( ) 0, =tx
k

ϕ  are denoted by 
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and the wave propagation velocity is denoted 
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the equations (10), (11) and (14) lead to the dynamic  
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and the constitutive compatibility equations [2 , 4] 
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Here the notations are used: 
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where 
pi

g  and 
p

i
g  are the metric tensors and 

2

V
L  is the second order Lie derivative. 

Substituting (15) and (16) into (17) we can write the wave propagation equation for the 

stress amplitude 
β

γγγ ~jiij
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The determinant of the matrix in bracket }{  in (18) is zero, because 
β

γ  is not zero 

{} .0det =  

This is the equation of the propagation of the third order wave, being the 24-th order al-

gebraical equation for the propagation velocity C . Matrix {} can be considered as the 

characteristic matrix (6x6) of a generalization of the acoustic tensor. 

The matrix of acoustic tensor can be obtained from (18). Let us denote the coefficients 

of C  in the form of 6x6 matrices by .HD,B,,SS,  The the acoustic matrix  

HDBSS ++++ CCCC
234

                                              (19) 

gives the wave propagation, if it is multiplied by γγγγ  and set equal to zero 

( ) 0HDBSS =++++ γγγγCCCC
234

. 

The most general acoustic tensor can be obtained from (19), when the coefficients of 

CCCC ,,, 234
 and C

o

have been denoted in form of 6x6 matrices .HD,B,,SS,  By 

introducting the inverse 
1

S
−

 and unit matrices I  , the wave propagation equation [6, 7] is  
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Now the generalized acoustic matrix can be written [6] in the following form 

 
 
 
 
 
  

-1 -1 -1 -1

-IC I 0 0

0 -IC I 0

0 0 -IC I

S H S D S B S S - IC

.                                        (20) 

The elements of the acoustic matrix are 6x6 matrices and the final matrix is 24x24. 

3. Two special cases. 

i). Let H  and D  be identical to zero; then equation (18) is  

{ } 0γ22 212
=+ρ−ρ BSS CCC . 

We can designate such bodies as the quasi-viscoelastic bodies.  

ii). Let us write the one dimensional form of equation (18) 
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4 3 2

2 2 2
tt tx xx tt tt t

v
f C f C f f f f C
σ σ σ ε σ

ρ ρ σ − + + − + +


 

( )2 0
tx tx x xx

v
f f f C f
ε σ ε

σ γ+ − + − + =


,                                    (21) 

where notations are as usual: stress σ , strain ε , velocity of strain v  and subscripts denote 
the partial derivatives. 

The algebraic equation (21) has at least two positive and negative real roots. The coeffi-

cients of that equation satisfy this condition. Similar conditions can also be supposed to the 

equation (18).  

These conditions for the material coefficients enable us to approximate the constitutive 

equations, when the suitable experiments are performed. 

 

 
Р Е З ЮМ Е .  Отримано узагальнений принцип віртуальних зміщень, коли віртуальні зміщення 

розглядаються як інтеграл по часу від віртуальної енергії. Рівняння Ейлера-Лагранжа дають рівняння 

для дивергенції похідної Лі по напруженнях. Рівняння руху в термінах поля швидкості напружень є 

одним з нових результатів цієї статті. При вивченні хвилі третього порядку отримано узагальнення 

акустичного тензора, яке можна вважати найбільшим досягненням у проведеному дослідженні. Цей 

результат може бути отриманий також при дослідженні хвилі прискорення. 
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