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Abstract. A linear one-dimensional model for thin-walled rods with open strongly 
curved cross-section, obtained by asymptotic methods is presented. A dimensional analysis 
of the linear three-dimensional equilibrium equations lets appear dimensionless numbers 
which reflect the geometry of the structure and the level of applied forces. For a given force 
level, the order of magnitude of the displacements and the corresponding one-dimensional 
model are deduced by asymptotic expansions. In the case of low force levels, we obtain a 
one dimensional model whose kinematics, traction and twist equations correspond to 
Vlassov ones. However this model couples twist and bending effects in the bending 
equations, at the difference from Vlassov model where the twist angle and the bending 
displacement are uncoupled. 
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1. Introduction. 
Thin and thin-walled structures (plates, shells, rods and thin-walled rods) are widely 

used in industry because they provide a maximum of stiffness with a minimum of weight. 

However there exists many different models in the literature. Therefore engineers must 

know a priori their respective domain of validity and what model to use in function of the 

given data of the problem (geometry of the structure, applied loads, boundary conditions). 

Classical models (Kirchhoff – Love, Koiter, Bernouilli, Vlassov...) are generally 

obtained from three-dimensional equilibrium equations by making a priori (kinematic and 

static) assumptions on the unknowns of the problem. Therefore, the domain of validity of these 

classical models with respect to the given data of the problem is difficult to specify rigorously. 

Asymptotic methods enable to deduce rigorously plate, shell and rod models from the 

three-dimensional equations without making any priori assumption. In linear plate and shell 

theory, since the pioneering work of Goldenveizer [11], there exists a large literature on the 

subject [2, 7, 38 – 41]. 

In linear theory of rods, the first works on the subject are due to Rigolot [33]. More 

recently, other justifications of linear and non linear rod models by asymptotic expansion 

have been developed in [3, 20 – 22, 42]. Let us also cite the synthesis [46] of previous works 

[44, 45] which recall the different possible approaches in linear theory of elastic rods 

(displacement formulation, mixed formulation in stress-displacements). 
These results then have been extended to thin-walled rods. The approach used is based 

on the asymptotic behavior of Poisson equation in a thin domain when the thickness tends 
towards zero [34, 35, 46]. This way, Rodriguez and Viaño [36] have justified a linear elastic 
model of Vlassov for thin-walled rod by asymptotic method similar to Vlassov one. 
However their approach uses "a priori" scaling assumptions on the displacement field which 
is an unknown of the problem. Moreover, it is based on an expansion at the second order of 
the equations with respect to the diameter ε  and then the relative thickness η  is assumed to 
tend towards zero. These two operations do not a priori commute and the result depends on 
the choice made (see fig. 1). 
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Fig. 1 

Existing asymptotic approaches. 

 

This is a classical result well known for multi-scales asymptotic approaches. It is 
encountered in shell theory (with the relative thickness and the shallowness as small 
parameters), in homogenization of composite or periodic structures [1, 9, 19]. 

We propose in this paper to use the constructive approach based on asymptotic 
expansions, already developed by the authors for plates [24 – 31], shells [8, 16, 17] and thin-
walled rods [12, 13, 18], to deduce a linear model for thin-walled rod from three-
dimensional equations. The approach used is based on a decomposition of the three-
dimensional equations on Frenet basis of the initial configuration. Then a dimensional 
analysis of equilibrium equations lets appear pertinent dimensionless numbers 
characterizing the geometry and the applied loads. These numbers are measurable and 
enable to define the domain of validity of the obtained model. Thus the order of magnitude 
of the displacements and the corresponding asymptotic model are directly deduced from the 
level of applied forces. This constitutes the constructive character of our approach.   

In this paper we limit our analysis to thin-walled rods with strongly curved profile 
subjected to low force levels. In lemma 1, we begin with deducing the order of magnitude of 
the displacements from the level of applied forces. Then the asymptotic expansion of 
equations leads to the kinematics and to the one-dimensional equilibrium equations of 
results 1 to 4. The kinematics and the one-dimensional traction and twist equations 
correspond exactly to Vlassov ones [47]. However, whereas Vlassov theory relies on a priori 
physical assumptions, in the approach developed here the unknowns of the problem are 
directly deduced from the three-dimensional equations. 

On the other hand, the one-dimensional bending equations obtained in result 4 differ 
from Vlassov ones. They involve a supplementary term coupling bending and torsion 
effects, whereas they are uncoupled in Vlassov model. (Such a limitation of Vlassov theory 

already have been noticed by other authors [5, 6, 23, 43]).  

We recall that in linear elastic theory, the thin-walled rods possess the following 
particular property: an external bending loading whose resultant induces a torque, will 
generally induce not only a bending displacement but also a twist. In contrary, a torque will 
induce only a twist, but no bending, at the difference from the model obtained in this paper. 
That is why we call it model "with coupling between twist and bending". However, let us 
notice that such a coupling between twist and bending effects exists in the models used for 
flexural-torsional buckling or in dynamics models for flexural and torsional vibration 
analysis (see for example [14, 15, 32, 37, 48]), but not for classical linear elastic analysis. 

2. The three-dimensional problem. 

We assume once and for all that an origin O  and an orthonormal basis 1 2 3( , , )e e e  have 

been chosen in 3
R . We index by a star *( )  all dimensional variables and the variables 

without a star will denote dimensionless variables. Let *
ω  be an open cylindrical surface of 

3
R , 3( )Oe  its axis, whose length is L  and diameter d . We note 

*
g

γ  and *
d

γ  its lateral 

boundary, * *
1 = {0}γ ω ×  and * *

2 = { }Lγ ω ×  its extremities. 
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Fig. 2 

Scheme of the rod and of the profile in the plane of a section 

 

Let us consider now a thin-walled rod with open cross-section and 2h  thickness, whose 

middle surface is *
ω . The thin-walled rod occupies the set 

* *
= [ , ]h hωΩ × −  of 3

R  in its 

reference configuration. We call * *
1 1= ] , [h hγΓ × −  and * *

2 2= ] , [h hγΓ × −  the extreme faces, 

* *
= ] , [

g g
h hγΓ × −  and * *= ] , [

d d
h hγΓ × −  the lateral faces, * *= { }hω

±
Γ × ±  the upper and 

lower faces. Let *
M  be a generic point of the beam. We decompose the vector 

*
OM

uuuuur

 as 

follows:  

* * * * * * *
3 3=OM x e G C C m r n+ + +

uuuuur uuuuuur uuuuuur

,                                          (1) 

where *
3x  is the coordinate of the current cross-section containing *

M  on the axis *
3(0 )x , 

*
G  the point of intersection between the axis *

3(0 )x  and the current cross-section, *
C  an 

arbitrary chosen point in the plane of the cross-section (see Fig. 2) located by its cartesian 

coordinates * *
1 2( , )c c

x x , and *
r  the thickness variable. We call *

C  the intersection curve 

between *
ω  and the cross-section. The orthogonal projection *

m  of *
M  on the middle 

surface is located by its cartesian coordinates * * *
1 2= ( , )x x x  or by its curvilinear abscissa *

s  

along *
C . The origin *

0s  of the curvilinear abscissa is an arbitrary chosen point of *
C . We 

note n  the unit normal and t  the unit tangent vector of *
C . Moreover, we call *

l  and *
q  

the coordinates of the vector 
* *

C m

uuuuuur

 in the basis ( , )t n . Finally, we call *
α  the angle 1( , )e t  

and *
c  the curvature of the curve *

C  (see fig. 2). 

In what follows, we consider only thin-walled rods such as << 1
d

L

, << 1
h

d

 and 

*|| || << 1h c
∞

. We assume that the rod is subjected to the applied body forces 

* * * * * 3
3 3= :

t n
f f t f n f e+ + Ω → R  and to the applied surface forces 

* * * * * 3
3 3 0= :

t n
g g t g n g e

± ± ± ±

±
+ + Γ → R . Moreover, the rod is assumed to be clamped on its 

extremities *
1Γ  and *

2Γ , and free on its lateral faces 
*
g

Γ  and *
d

Γ . The unknown of the 

problem is then the displacement * * 3:U Ω → R . Within the framework of linear elasticity, 

the displacement U* and the Cauchy stress tensor *
σ  satisfy the linear equilibrium 

equations: 
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* * * *

* *
0,1

* * *

* *
,

= in ;

= 0 on ;

. = on ;

. = 0 on ,
g d

Div f

U

N g

T

σ

σ

σ

±

±

 − Ω


Γ


Γ


Γ

                                         (2) 

where N  and T  denote the unit outward normal vector to the upper and lower faces and to 

the lateral extremities respectively. Within the framework of linear elasticity, the 

constitutive law of the Hookean material considered writes * * *= ( ) 2Tr e I eσ λ µ+ , where 

* *
*

* *

1
=

2

U U
e

M M

 
∂ ∂

 +

 ∂ ∂ 

 denotes the linear strain tensor, λ  and µ  denote the Lamé constants 

of the material, and the overbar the transposition operator. Finally the boundary conditions 

on 
* *
g d

Γ ∪ Γ  are considered on average upon the thickness, in order the twist to be of the 

same order as the bending in the asymptotic model obtained. 

3. Dimensional analysis of equilibrium equations and reduction to a one-scale 

problem. 

First, we decompose the equations such as to separate the axial components from the 

components in the plane of the cross-section. To do this, let us decompose *
U on Frenet 

basis 3( , , )t n e  of the initial configuration as follows:  

* * * *
3 3=

t n
U u t u n u e+ + .                                                    (3) 

Then the gradient of the vector *
U  can be decomposed in the basis 3( , , )t n e  on the 

following form:  

* * *
* * *

* * *
3

* * *
* * ** * * *

* * ** * *
3* * * *

3

* * *
* 3 3 3

* * *
3

= =

t t t

n

n n n

t

u u u
k c u

s r x

U U U
k c UU u u u

k c us r x

M s r x

u u u
k

s r x

  ∂ ∂ ∂
−   

∂ ∂ ∂  
 
   ∂ ∂ ∂
 + Λ  ∂    ∂ ∂ ∂ 

+∂ ∂ ∂       
∂ ∂ ∂ ∂   

   
 
 

∂ ∂ ∂

 
∂ ∂ ∂  

, 

where *

* *

1
=

1
k

r c−

 and where 

0 1

= 1 0

− 
 

Λ  
  

 denotes the two-dimensional matrix of the 

wedge product. In the same way , the three-dimensional equilibrium equations can be 

decomposed in the basis 3( , , )t n e  and writes in *
Ω :  

* * *
* * * *3

* * *
3

2 = ;tn tt t

tn t
k c f

r s x

σ σ σ
σ

 ∂ ∂ ∂
+ − + −  

∂ ∂ ∂ 
 

* * *
* * * * * *3

* * *
3

= ;nn tn n

tt nn n
k c c f

r s x

σ σ σ
σ σ

 ∂ ∂ ∂
+ + − + −  

∂ ∂ ∂ 
 

* * *
* * * *3 3 33

3 3* * *
3

= .n t

n
k c f

r s x

σ σ σ
σ

 ∂ ∂ ∂
+ − + −  

∂ ∂ ∂ 
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The detailed expression of the components of *
σ  will be given directly in their 

dimensionless form (4). The associated boundary conditions on the upper and lower faces 
*
±

Γ  are given by:  

* * * * * *
3 3= , = , =

tn t nn n n
g g gσ σ σ

± ± ±  

and the boundary conditions on the lateral extremities 
*

,g d
Γ  reduce to:  

* * *
3= 0, = 0, = 0.

tt tn t
σ σ σ  

It is important to notice that a boundary layer with respect to the shear stress *
3tσ  

appears on the free lateral extremities. This is a classical phenomenon in plate and shell 

theory. In order to avoid this boundary layer which is not the subject of this paper, we relax 

the boundary conditions on 
*

,g d
Γ  as follows: *

3 = 0
h

t
h

drσ
−
∫ . 

3.1. Dimensional analysis of equations. Let us define the following dimensionless 

physical data and dimensionless unknowns of the problem: 
*

= ;t

t

rt

u
u

u

  
*

= ;n

n

rn

u
u

u

  
*
3

3

3

= ;
r

u
u

u

  
*
3

3 = ;
x

x

L

  
*

= ;
s

s

d

*

= ;
r

r

h

  
*

= ;
r

c
c

c

  
t

f =
*

t

rt

f

f

;  
n

f =
*
n

rn

f

f

;  

3f =
*

3

3r

f

f

;  
t

g =
*
t

rt

g

g

;  
n

g =
*
n

rn

g

g

;  3g =
*
3

3r

g

g

, 

where the variables indexed by ( )
r

 are the reference ones. The new variables which appear 

(without a star) are dimensionless. To avoid any assumption on the order of magnitude of 

the displacement components, the reference scales 
tr

u , 
nr

u  and 3r
u  are firstly assumed to 

be equal to h . Thus we a priori allow small displacements in the framework of the theory of 

linear elasticity. 

 In a natural way we introduce *=|| ||
r

c c
∞

 which denotes the maximum of curvature 

(the smaller radius of curvature) of the middle surface *
ω . As in shell theory, the order of 

magnitude of the curvature is a fundamental data in the asymptotic expansion of equations. 

Therefore we will have to distinguish the rods with shallow cross profile from the rods with 

strongly curved profile. 

First the dimensional analysis of the coefficient *
k  leads to 

1
=

1
r

k

hc rc−

. Setting 

=
r

hcν , the assumption of thin walled-rod ensures that 1ν � . We then have the following 

expansion 2= 1 ( ) ...k rc rcν ν+ + + . 

On the other hand, the dimensional analysis of the stress tensor leads to:  

3

3

3 3 33

=

tt tn t

tn nn n

t n

σ σ σ

σ σ σ σ

σ σ σ

 
 
 
  

 

with 

tt
σ = n

u

r

β
∂

∂

2 3

3

( 2)[1 ( ) ...] t

n

u u
rc rc cu

s x

β ν ν η ν βηε
∂ ∂ 

+ + + + + − + 
∂ ∂ 

; 

nn
σ =

2 3

3

( 2) [1 ( ) ...]n t

n

u u u
rc rc cu

r s x

β β ν ν η ν βηε
∂ ∂ ∂ 

+ + + + + − + 
∂ ∂ ∂ 

; 

33σ =
2 3

3

[1 ( ) ...] ( 2)n t

n

u u u
rc rc cu

r s x

β β ν ν η ν β ηε
∂ ∂ ∂ 

+ + + + − + + 
∂ ∂ ∂ 

; 
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tn
σ =

2
[1 ( ) ...]t n

t

u u
rc rc cu

r s

ν ν η ν
∂ ∂ 

+ + + + + 
∂ ∂ 

; 

3tσ =
2 3 3

3
3 3

[1 ( ) ...] , =t n

n

u u u u
rc rc

s x r x

ν ν η ηε σ ην
∂ ∂ ∂ ∂

+ + + + +

∂ ∂ ∂ ∂

,           (4) 

where we set * =σ µσ , =
d

L

ε , =
h

d

η  and =
λ

β

µ

. Now let us denote ω  the dimensionless 

middle surface obtained from *
ω , whose current point will be noted m . Its associated 

curvature C  is obtained by dimensional analysis of *
C . Then the dimensional analysis of 

the three-dimensional linear equilibrium equations leads in = ] 1,1[ωΩ × −  to: 

tn

r

σ∂

∂

+
2

(1 ( ) ...) 2tt

tn
rc rc c

s

σ
ν ν η ν σ

∂ 
+ + + − 

∂ 
+

3

3

t

x

σ
ηε

∂

∂

=
t t

F f− ; 

nn

r

σ∂

∂

+
2

(1 ( ) ...) tn

tt nn
rc rc c c

s

σ
ν ν η ν σ ν σ

∂ 
+ + + + − 

∂ 
+

3

3

n

x

σ
ηε

∂

∂

=
n n

F f− ; 

3n

r

σ∂

∂

+
2 3

3(1 ( ) ...) t

n
rc rc c

s

σ
ν ν η ν σ

∂ 
+ + + − 

∂ 
+

33

3x

σ
ην

∂

∂

= 3t
F f− .           (5) 

The associated boundary conditions on the upper and lower faces 
±

Γ  become: 

3 3 3= , = , =
tn t t nn n n n

G g G g G gσ σ σ
± ± ± .                               (6) 

Therefore, this dimensional analysis naturally reveals the following dimensional 

numbers characterizing the thin-walled rod problems in linear elasticity (they are 

measurable data of the problem and must be considered as given data):  

ε =
d

L

;  η =
h

d

;  ν =
r

hc ;  
t

F = tr
hf

µ

;  
n

F = nr
hf

µ

; 

3F = 3r
hf

µ

;  
t

G = tr
g

µ

;  
n

G = nr
g

µ

;  3G = 3r
g

µ

; 

i) The shape ratio ε  characterizes the inverse of the shooting-pain of the rod. This is a 

known parameter of the problem which satisfies 1ε� . 

ii) The dimensional number η  denotes the ratio between the thickness h  of the rod to 

the length of its profile. This number is also a data of the problem which satisfies 1η� . 

iii) The shape ratio =
r

hcν  is the ratio between the thickness to the smaller radius of 

curvature of the middle surface ω  of the rod. Its is a given geometrical data of the problem. 

iv) The force ratios , ( { , ,3})
i i

F G i t n∈  represent respectively the ratio of the resultant 

on the thickness of the body forces (respectively of the surface forces) to µ  considered as a 

reference stress. These numbers only depend on known physical quantities and must be 

considered as known data of the problem. 
3.2. One-scale assumption. To reduce the problem to a one-scale problem, ε  is chosen 

as the small reference parameter of the problem. (If not we have multi-scale problems which are 

much more complicated. It is not the subject of this paper). 

 The other dimensional numbers are then linked to ε , or more precisely to the powers 

of ε . In a natural way, as in shell theory, we have to distinguish thin-walled rods: 

with strongly curved profile where =ν ε ; 

with shallow profile where 2=ν ε . 

This distinction is fundamental because these two families of thin-walled rods do not 

have the same asymptotic behavior. 

On the other hand, three cases can be distinguished and studied: 

the thick rods where = 1η . This is not the subject of this paper;  
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the thin-walled rods where =η ε . It is the case studied here;  

the very thin-walled rods where = p
η ε , > 1p . This case is not studied in this paper.  

Finally, the applied loads are an essential given data of the problem. In the framework 

of a one-scale asymptotic expansion, the force ratios must be linked also to ε . This is 

equivalent to fix the order of magnitude of the applied forces which are given data. In the 

case of thin-walled rods with strongly curved profile, we will consider applied forces such 

as: 6 6 5
3 3= = , = = , = =

t t n n
F G F G F Gε ε ε . 

These force ratios, which characterize the level of applied forces, are chosen in order all 

kinds of loading to be involved at the same order in the asymptotic one-dimensional 

equilibrium equations. 

In the sequel, we shall consider a thin-walled rod with a strongly curved profile 

corresponding to = =η ν ε , submitted to force levels such as 6= =
t n

F F ε , 6= =
t n

G G ε  

and 5
3 3= =F G ε . The problem then reduces to a dimensionless one-scale problem, which 

can be easily written from (5) and (6), using the expressions (4) of the stresses. 

4. Asymptotic expansion of equations. 

The standard asymptotic technique then proceeds as follows. First we postulate that the 

solution 3= ( , , )
t n

U u u u  of the problem admits a formal expansion with respect to the 

powers of ε : 

0 0 0 1 1 1 2 2 2 2
3 3 3 3( , , ) = ( , , ) ( , , ) ( , , ) ...

t n t n t n t n
u u u u u u u u u u u uε ε+ + + .                        (7) 

The expansion of U  with respect to ε  implies an expansion of the components of the 

stresses σ  with respect to ε  as well. Then we replace 
t

u , 
n

u , 3u  by their expansions in 

equilibrium equations and we equate to zero the factor of the successive powers of ε . This 

way we obtain a succession of coupled problems 0P , 1P , 2P … . Its resolution leads to the 

search asymptotic one-dimensional model corresponding to the force level considered. 
It is important to notice that with the approach developed here, the order of magnitude 

of the displacements (which are unknowns of the problem) are directly deduced from the 
level of applied forces. In particular, for the force levels considered here, the axial displacement 
is one order smaller then the other ones. This is the result of the following lemma: 

Lemma 1. 

For force levels such as 
6= =

t n
F F ε , 

6= =
t n

G G ε  and 
5

3 3= =F G ε , we have 
0
3 = 0u .  

The proof of this lemma is rather long and technical. The demarche is similar to the 

proof of result 1 and is not detailed here. Hence, for the level forces considered, the 

reference scales of the axial displacement 3 =
r

u h  is not properly chosen. In order for 3u  to 

be of the order of one unit, the reference scales of the displacement must satisfy 3 =
r

u hε . 

Therefore the new reference scale for the axial displacement *
3u  that we have to consider is 

3 =
r

u hε . The other reference scales for the tangential and normal displacements 

= =
tr nr

u u h  stay unchanged. 

Remark 1. It is important to notice that this lemma only leads to the right scalings for 

the displacements corresponding to the level of applied forces considered. However, it 

would have been possible to start directly from these right scalings or reference scales for 

the displacements, as it is often made in the literature.  

5. The one-dimensional model. 

In the last section, we have determined the right reference scales (or equivalently the 

order of magnitude) of the displacements corresponding to the force levels considered. In 

this section, we perform the asymptotic expansion of equations which leads to the search 

one-dimensional model. 



 130 

According to the force levels considered 6= =
t n

F F ε , 6= =
t n

G G ε  and 5
3 3= =F G ε , 

the dimensionless equilibrium equations must be written again with 3 =
r

u hε  and 

= =
tr nr

u u h  as reference scales. The dimensionless components of the displacement will 

still be noted with ,
t n

u u  and 3u . Thus for the level forces considered here, the new 

dimensionless equilibrium equations are the same as the previous ones (4) – (6). Only 3u  

must be changed into 3uε  in the new expressions of the components of the stresses. Then 

we assume again that there exists a formal expansion with respect to ε , similar to (7), of the 

new dimensionless solution 3( , , )
t n

u u u . 

5.1. A Vlassov kinematics. Result 1: For applied force levels such as 
6= =

t n
F F ε , 

6= =
t n

G G ε  and 
5

3 3= =F G ε , the leading term 
0 0 0

3( , , )
t n

u u u  is a displacement of Vlassov 

type which satisfies:  

0
t

u% = 0
1 2cos( ) sin( ) ( )c c

u u q sα α+ − Θ ;  0
n

u% = 0
1 2sin( ) cos( ) ( )c c

u u l sα α− + + Θ ; 

0
3u% =

0
1 2

3 1 2
3 3 3

c c
du du d

u x x

dx dx dx

ω
Θ

− − − , 

where 3u  denotes the axial or traction displacement; 1
c

u  and 2
c

u  denote the tangential 

displacements of the point C ; 0
Θ  denotes the angle of rotation around the axis 3( , )C e ; ω  

is called the sectorial area defined as follows; =d ds qω − . 

Proof:  The asymptotic expansion of the new dimensionless equations leads again to 

problems 0P , 1P , 2P .… 

Problem 0P : 

The cancellation of the factor of 0
ε  leads to 0P  which can be written:  

0

0

0 0

= 0
= 0;

= 1
= 0.

= 0

tn

tn

nn nn

r

in for r

r

σ

σ

σ σ

 ∂

 
∂ 

 
Ω ± 

∂ 
 

∂ 


 

Therefore, we get 0 0=
tn nn

σ σ  in Ω  which implies that all the components of 0
σ  are 

equal to zero. Then writing the components of the stresses in terms of displacements, we 

obtain 
0

= 0t
u

r

∂

∂

 and 
0

= 0n
u

r

∂

∂

 in Ω , or in an equivalent way (in the next, for the simplicity of 

the notations, we will adopt the following ones: a function u  which depends only of 3( , )s x  will be 

noted u% ; a function u  which depends only on 3( )x  will be noted u ): 

0 0 0 0
3 3= ( , ), = ( , )

t t n n
u u s x u u s x% % .                                    (8) 

Let us now prove that 0 0
3 3 3= ( )u u x . 

Problem 1P  : 

The cancellation of the factor of ε  leads to problem 1P  which easily implies that 

1 1 1
3= = = 0

tn nn n
σ σ σ . Writing the stresses in terms of displacements, we obtain in Ω :  

1 0 1=
t t t

u r uψ− +% % ;                                                         (9) 

1 0 1
=

2
n n n

u r u
β

ψ

β

− +

+

% % ;                                                  (10) 
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0 0
3 3=u u%                                                              (11) 

with 

0
t

ψ%

0
0

= ,n

t

u
cu

s

∂
+

∂

%
%   

0
0 0

= t

n n

u
cu

s

ψ
∂

−

∂

%
% % .                                       (12) 

From the last expressions, the components of the stresses at order 1  reduce to: 
1

1 0 01
= (2 ) = 4

2

n

tt n n

u

r

β
σ β β ψ ψ

β

∂ +
+ +

∂ +

% % ;                                     (13) 

1
1 0 0
33 = = 2

2

n

n n

u

r

β
σ β βψ ψ

β

∂
+

∂ +

% % ;                                        (14) 

0
1 3
3 =

t

u

s

σ
∂

∂

%
.                                                           (15) 

The boundary conditions on the lateral surfaces at order one for =s s
+

 and =
g

s s  write 

1 = 0
tt

σ  and 

1 1
31

= 0
t

drσ
−
∫ .                                                           (16) 

Problem 2P . 

The cancellation of the factor of 2
ε  leads to problem 2P  which reduces in Ω  to 

2 1

= 0tn tt

r s

σ σ∂ ∂
+

∂ ∂

;  
2

1
= 0nn

tt
c

r

σ
σ

∂
+

∂

;  
2
3 = 0n

r

σ∂

∂

                     (17) 

with the associated boundary conditions for = 1r ±  
2 2 2

3= 0, = 0, = 0
tn nn n

σ σ σ .                                    (18) 

Let us integrate equation (17) upon the thickness. With the boundary condition (18), we 

obtain 
1 1

1
= 0

tt
drσ

−
∫ . Replacing 1

tt
σ  with its expression (13) in terms of displacement, we get 

0 = 0
n

ψ% . Then, from (9) – (14) we deduce that 1 1 1 1
33= = 0 and =

tt n n
u uσ σ % . 

Then problem 2P  leads, according to the boundary conditions, to 2 2 2
3= = = 0

tn nn n
σ σ σ . 

The last equations are equivalent in terms of displacements to: 
0 2 0

2 1 2 2 1 2 1 1
3 3

3

= , = , =
2 2 2

t n

t t t n n n

r u
u r u u r u u r u

s x

β ψ β
ψ ψ

β β

∂ ∂
− + − + − +

+ ∂ + ∂

% %
% %% % %            (19) 

with 
1 1

1 1 1 1
= and =n t

t t n n

u u
cu cu

s s

ψ ψ
∂ ∂

+ −

∂ ∂

% %
% %% % . 

From the last expressions of the displacements, we obtain the following expressions of 

the components of the stresses 2
σ  at order two:  

0
2 11 1

= 4 4
( 2) 2

t

tt n
r

s

β ψ β
σ ψ

β β

+ ∂ +
− +

+ ∂ +

%
% ;                                     (20) 

0
2 1
33 = 2 2

( 2) 2

t

n
r

s

β ψ β
σ ψ

β β

∂
− +

+ ∂ +

%
% ;                                     (21) 

0 0
2 3
3

3

= t

t

u u

s x

σ
∂ ∂

+

∂ ∂

% %
.                                                        (22) 

The associated boundary conditions on the lateral surface =s s
−

 and =s s
+

 write 

2 = 0
tt

σ  and 
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1 2
31

= 0
t

drσ
−
∫ .                                                            (23) 

That leads, in terms of displacements, to 1 1( ,0) = ( ,0) = 0
n n

s sψ ψ
− +

% %  and  

0 0

( ) = ( ) = 0t t
s s

s s

ψ ψ

− +

∂ ∂

∂ ∂

% %
;  

0 0 0 0
3 3

3 3

( ) = ( ) = 0t t
u u u u

s s

s x s x
− +

   ∂ ∂ ∂ ∂
+ +   

∂ ∂ ∂ ∂   

% % % %
.      (24) 

Problem 3P . 

The cancellation of the factor of 3
ε  leads to problem 3P  which reduces in Ω  to: 

3 2

= 0tn tt

r s

σ σ∂ ∂
+

∂ ∂

;                                                       (25) 

3
2

= 0nn

tt
c

r

σ
σ

∂
+

∂

;                                                       (26) 

3 2
3 3 = 0n t

r s

σ σ∂ ∂
+

∂ ∂

                                                       (27) 

with the associated boundary conditions for = 1r ±  
3 = 0
tn

σ ;  3 = 0
nn

σ ;                                                    (28) 

3
3 = 0

n
σ .                                                            (29) 

As previously, let us integrate equation (26) upon the thickness. With the boundary 

condition (28), we obtain 
1 2

1
= 0

tt
drσ

−
∫ . According the the expression (20) of 2

tt
σ , we get 

1 = 0
n

ψ% . Thus expressions (20) and (21) of 2
tt

σ  and 2
33σ  reduce to: 

0 0
2 2

33

1
= 4 ; = 2

( 2) ( 2)

t t

tt
r r

s s

β ψ β ψ
σ σ

β β

+ ∂ ∂
− −

+ ∂ + ∂

% %
.                         (30) 

In the same way, we shall now integrate (27) upon the thickness. Using (29), and then 

(23) and (22), we obtain: 
0 0
3

3

= 0t
u u

s x

∂ ∂
+

∂ ∂

% %
,                                                        (31) 

which is nothing else than the non-distorsion Vlassov assumption obtained for the leading 

term of the expansion of the displacement. Using the previous results obtained, the 

expressions of the stresses at order three reduce to   
2 0 2 0 2

3 3 3
32

1 1 1 1
= 4 ; = 4 ; = 0

2 2 2 2

t t

tn nn n

r r
c

ss

β ψ β ψ
σ σ σ

β β

+ ∂ − + ∂ −

+ + ∂∂

% %
.        (32) 

On the other hand, according to (32), the boundary conditions at order three 
3 3

3 3( , ) = ( , ) = 0
tn tn

s x s xσ σ
− +

, leads in terms of displacements to: 

2 0 2 0

3 32 2
( , ) = ( , ) = 0t t
s x s x

s s

ψ ψ

− +

∂ ∂

∂ ∂

% %
.                                           (33) 

Problem 4P . 

The cancellation of the factor of 4
ε  leads to problem 4P  which reduces in Ω  to: 

4 3 2
3

2 = 0tn tt tt

tn
c rc

r s s

σ σ σ
σ

∂ ∂ ∂
+ − +

∂ ∂ ∂

;                                       (34) 

4 3
3 3 2 2

= 0nn tn

tt nn tt
c c rc

r s

σ σ
σ σ σ

∂ ∂
+ + − +

∂ ∂

;  
4 3 2
3 3 33

3

= 0n t

r s x

σ σ σ∂ ∂ ∂
+ +

∂ ∂ ∂

,              (35) 

with the boundary conditions for = 1r ±  
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4 = 0
tn

σ ;                                                                   (36) 

4 = 0
nn

σ ;                                                                  (37) 

4
3 = 0

n
σ .                                                                   (38) 

Using the boundary conditions (36) and (37), an integration of equations (34) and (35) 

upon the thickness lead to: 
3 2

1 3

1
2 = 0tt tt

tn
c rc dr

s s

σ σ
σ

−

 ∂ ∂
− +  

∂ ∂ 
∫ ;                                      (39) 

3
1 3 3 2 2

1
= 0tn

tt nn tt
c c rc dr dr

s

σ
σ σ σ

−

 ∂
+ − +  

∂ 
∫ .                                (40) 

In the same way, after multiplying equations (25) and (26) with rc , the integration upon 

the thickness leads to  
2

1 13

1 1
= tt

tn
c dr rc dr

s

σ
σ

− −

∂

∂
∫ ∫ ;                                                  (41) 

1 13 2 2

1 1
=

nn tt
c dr rc drσ σ

− −
∫ ∫ .                                                  (42) 

We then use (41) [respectively (42)] to simplify (39)[respectively (40)] which reduce to  
3

1 3

1
= 0tt

tn
c dr

s

σ
σ

−

 ∂
−  

∂ 
∫ ;                                                  (43) 

3
1 3

1
= 0tn

tt
c dr

s

σ
σ

−

 ∂
+  

∂ 
∫ .                                                   (44) 

On the other hand, let us derive (44) with respect to s . We have: 
2 3 3

1 3

21
= 0tn tt

tt

dc
c dr

ds ss

σ σ
σ

−

 ∂ ∂
+ +  

∂∂ 
∫ .                                      (45) 

Now using (43) and (44) to eliminate 3
tt

σ  in (45), we obtain according to (32): 

4 0 3 0 2 0
2

4 3 2

1
= 0t t t

dc
c

c dss s s

ψ ψ ψ∂ ∂ ∂
− +

∂ ∂ ∂

% % %
, whose general solution is given by 

2 0

2
= ( ) ( )t

Acos Bsin

s

ψ
α α

∂
+

∂

%
, with ( ) =

d
c s

ds

α
. Using the boundary conditions (33) and (24), 

we obtain 
0

= 0t

s

ψ∂

∂

%
 or equivalently 0

3= ( )
t

xψ Θ% . Therefore the tangential displacements are 

solution of the following differential system: 

0

0 0

0

=

n

t

ψ

ψ

=

Θ

%

%
= 0 ⇒

0
0

0
0 0

= 0;

.

t

n

n

t

u
cu

s

u
cu

s

∂
−

∂

∂
+ = Θ

∂

%
%

%
%

 

In a Cartesian basis, we get after a few calculations  
0 0 0 0
1 1 2 2 2 2 1 1= ( ) = ( )c c c c

u u x x and u u x x− − Θ + − Θ% % , 

where 1
c

u  and 2
c

u  represents at the leading order the displacements of the arbitrary point C  

in the directions 1e  and 2e . The angle 0
Θ  characterizes the rotation of the section around 

the axis 3( , )C e . The point C  is generally identified to the shear center of the sections. In 

the basis (t,n), we then have: 
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0 0
1 2

0 0
1 2

= cos( ) sin( ) ( ) ;

= sin( ) cos( ) ( ) ;

c c

t

c c

n

u u u q s

u u u l s

α α

α α

 + − Θ





− + + Θ

%

%

 

with  

1 1 2 2

1 1 2 2

( ) = ( )cos ( )sin ;

( ) = ( )sin ( )cos .

c c

c c

l s x x x x

q s x x x x

α α

α α

− + −

− − + −

 

This last expression characterizes a rigid displacement in the plane of the sections and is 

similar to Vlassov kinematics. (Excepted for the sign of q  in the expression of 
0

t
u% . This is due to 

an orientation of the normal n  opposite to Vlassov one). Moreover, the axial displacement 0
3u  

can be determined from (31). We obtain the expresion of 0
3u%  of result 1. 

5.2. Traction equation. Result 2: For applied level forces such as 6= =
t n

F F ε , 

6= =
t n

G G ε  and 5
3 3= =F G ε , the leading terms of the displacements 3u , 0

Θ , 1
c

u  and 2
c

u  

satisfy the following traction equation: 
2

3
2
3

d u
ES

dx

3
1

1 3
3

c
d u

ES

dx

−

3
2

2 3
3

c
d u

ES

dx

− – 

3 0

3
3

d
ES

dx
ω

Θ
− 3= Pµ− , where E and µ  are respectively Young modulus and Lamé coefficient 

of the material, and where: 

S =
1

1

s

s

drds
+

−
−

∫ ∫ ;  S
ω

=
1

1

s

s

drdsω
+

−
−

∫ ∫ ;  1S
1

11
=

s

s

x drds
+

−
−

∫ ∫ ; 

2S =
1

21

s

s

x drds
+

−
−

∫ ∫ ;  3P =
1

3 3 31
[ ]

s s

s s

f drds g g ds
+ −+ +

−
− −

+ −∫ ∫ ∫ . 

Proof: We just proved that 0 0=
t

ψ Θ% . So we have 2 2
33= = 0

tt
σ σ  and 3 3= = 0

tn nn
σ σ , that 

leads to the following expressions of the stresses at order three: 

1 0
3 2 3

3

1 1
= 4 4 2

( 2) 2 2

t

tt n

u
r

s x

β ψ β β
σ ψ

β β β

+ ∂ + ∂
− + +

+ ∂ + + ∂

% %
% ;                                   (46) 

1 0
3 2 3
33

3

1
= 2 2 4

( 2) 2 2

t

n

u
r

s x

β ψ β β
σ ψ

β β β

∂ + ∂
− + +

+ ∂ + + ∂

% %
% ;  

1 1 0
3 3
3

3 3

= 2t

t

u u d
r

s x dx

σ
∂ ∂ Θ

+ −

∂ ∂

% %
.            (47) 

Problem 4P  then reduces in Ω  to: 

4 3

= 0tn tt

r s

σ σ∂ ∂
+

∂ ∂

;  
4

3
= 0nn

tt
c

r

σ
σ

∂
+

∂

;                                           (48) 

4 3
3 3 = 0n t

r s

σ σ∂ ∂
+

∂ ∂

.                                                         (49) 

Using (37), the integration of equation (48) upon the thickness leads to 
1 3

1
= 0

tt
drσ

−
∫ . 

Then replacing 3
tt

σ  with its expression (46), we get 
0

2 3

3

1
4 2 = 0

2 2
n

u

x

β β
ψ

β β

+ ∂
+

+ + ∂

%
% . On the 

other hand, using (38) the integration of equation (49) upon the thickness leads to 
1 3

31
= 0

t
drσ

−
∫ . According to (47), we have equivalently in terms of displacements 

1 1
3 3( ) ( ) = 0

t
u s u x∂ ∂ + ∂ ∂% % , and the expressions of the stresses reduce to: 
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1 1 0 0
3 3 33

33 3
3 3

1 3 2
= 4 ; = 2 ; = 2

( 2) ( 2) 1

t t

tt t

u d
r r r

s s x dx

β ψ β ψ β
σ σ σ

β β β

+ ∂ ∂ + ∂ Θ
− − + −

+ ∂ + ∂ + ∂

% % %
.    (50) 

This last equation leads to 4
3 = 0

n
σ  according to (38) and (49). 

Problem 5P  : 

The cancellation of the factor of 5
ε  leads to problem 5P  which reduces in Ω  to  

5 4 3 3
4 3

3

2 = 0tn tt tt t

tn
c rc

r s s x

σ σ σ σ
σ

∂ ∂ ∂ ∂
+ − + +

∂ ∂ ∂ ∂

;                                  (51) 

5 4
4 4 2 3

= 0nn tn

tt nn tt
c c rc

r s

σ σ
σ σ σ

∂ ∂
+ + − +

∂ ∂

;                                   (52) 

5 4 3
3 3 33

3
3

=n t
f

r s x

σ σ σ∂ ∂ ∂
+ + −

∂ ∂ ∂

,                                             (53) 

with the boundary conditions for = 1r ±  
5 5 5

3 3= 0, = 0, =
tn nn n

gσ σ σ
± .                                      (54) 

Using the boundary condition (54), an integration of (53) upon the thickness leads to:  
4 3

1 13 33
3 3 31 1

3

= [ ]
s s s

t

s s s

drds f drds g g ds

s x

σ σ
+ −+ + +

− −
− − −

 ∂ ∂
+ − − −  

∂ ∂ 
∫ ∫ ∫ ∫ ∫ . 

Using the boundary condition 
1 4

31
= 0

t
drσ

−
∫  on the free lateral surface for =s s

−
 et 

=s s
+

, we obtain:  

3
1 133

3 3 31 1
3

= [ ]
s s s

s s s

drds f drds g g ds

x

σ
+ −+ + +

− −
− − −

∂
− − −

∂
∫ ∫ ∫ ∫ ∫ . 

Finally replacing 2
33σ  with its expressions (50), we obtain the traction equation of result 2. 

5.3. Twist equation. Result 3: For applied forces such as 
6= =

t n
F F ε , 

6= =
t n

G G ε  

and 
5

3 3= =F G ε , the leading terms of the displacement 3u , 
0

Θ , 1
c

u  and 2
c

u  satisfy the 

following twist equation:  
3 4 4 4 0 2 0

3 1 2 3
1 23 4 4 4 2

33 3 3 3 3

=
c c

d t

E d u E d u E d u E d d dM
S J J J J M

dxdx dx dx dx dx
ω ω ω ωω ω

µ µ µ µ

Θ Θ
− − − + − − , 

where: 

S
ω

=
1

1

s

s

drdsω
+

−
−

∫ ∫ ; J
ωω

=
1 2

1

s

s

drdsω
+

−
−

∫ ∫ ; 1J
ω

=
1

11

s

s

x drdsω
+

−
−

∫ ∫ ; 2J
ω

=
1

21

s

s

x drdsω
+

−
−

∫ ∫ ; 

d
J

ω
=

1 2

1
2 (1 )

s

s

r cq drds
+

−
−

−∫ ∫ ;  3M =
1

3 3 31
[ ]

s s

s s

f drds g g dsω ω
+ −+ +

−
− −

+ −∫ ∫ ∫ , 

1 1

1 1
= [ ] [ ] .

s s s s

t n n n t t t
s s s s

M lf drds l g g ds qf drds q g g ds
+ − + −+ + + +

− −
− − − −

+ − − − −∫ ∫ ∫ ∫ ∫ ∫  

Proof: Let us follow step by step for equation (51) and (52) the same demarche as for 

problem 4P . We can prove in the same way that 1
t

ψ%  does not depend on 3x  and we set 

1 1
3= ( )

t
xψ Θ% . Thus the displacement at order 1 has the same form as the displacement at the 

leading order. On the other hand, according to the previous result, problem 5P  reduces in Ω  to: 

5 4 3
3

3

= 0tn tt t

r s x

σ σ σ∂ ∂ ∂
+ +

∂ ∂ ∂

;                                                (55) 

5
4

= 0nn

tt
c

r

σ
σ

∂
+

∂

;                                                     (56) 
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5 4 3
3 3 33

3
3

=n t
f

r s x

σ σ σ∂ ∂ ∂
+ + −

∂ ∂ ∂

,                                             (57) 

with the following expressions of the stresses at order three: 3 = 0
tt

σ  and  
0

3 3
33

3

3 2
=

1

u

x

β
σ

β

+ ∂

+ ∂

%
;                                                     (58) 

0
3
3

3

= 2
t

d
r

dx

σ
Θ

− .                                                      (59) 

Problem 6P : 

The cancellation of the factor of 6
ε  leads to the following tangential and normal 

equations of problem 6P  which write in Ω : 

6 5 4 4
5 3

3

2 =tn tt tt t

tn t
c rc f

r s s x

σ σ σ σ
σ

∂ ∂ ∂ ∂
+ − + + −

∂ ∂ ∂ ∂

;                                (60) 

6 5
5 5 2 4

=nn tn

tt nn tt n
c c rc f

r s

σ σ
σ σ σ

∂ ∂
+ + − + −

∂ ∂

,                                 (61) 

with the boundary conditions for = 1r ±  
6 =
tn t

gσ
± ;                                                             (62) 

6 =
nn n

gσ
± .                                                             (63) 

Let us integrate equations (60) and (61) upon the thickness. Using the boundary 

conditions (62) and (63), we obtain the system:  
5 4 4

1 15 3

1 1
3

2 = [ ]tt tt t

tn t t t
c rc dr f dr g g

s s x

σ σ σ
σ

+ −

− −

 ∂ ∂ ∂
− + + − − −  

∂ ∂ ∂ 
∫ ∫ ;                  (64) 

5
1 15 5 2 4

1 1
= [ ]tn

tt nn tt n n n
c c rc dr f dr g g

s

σ
σ σ σ

+ −

− −

 ∂
+ − + − − −  

∂ 
∫ ∫ .                 (65) 

Let us now use equations of problem 5P . First multiplying equations (55) and (56) with 

rc , we obtain: 
5 4 3 5

1 1 2 43

1 1
3

= 0; = 0tn tt t nn

tt
rc rc rc dr rc rc dr

r s x r

σ σ σ σ
σ

− −

   ∂ ∂ ∂ ∂
+ + +      

∂ ∂ ∂ ∂   
∫ ∫ . 

An integration by parts of the previous equations leads to: 

4 3
1 5 3

1
3

= 0tt t

tn
c rc rc dr

s x

σ σ
σ

−

 ∂ ∂
− + +  

∂ ∂ 
∫ ;                                     (66) 

( )
1 5 2 4

1
= 0

nn tt
c rc drσ σ

−

− +∫ .                                                    (67) 

Then replacing (66) and (67) in (64) and (65) respectively, we get:  

5 3 4
1 15 3 3

1 1
3 3

= [ ]tt t t

tn t t t
c rc dr f dr g g

s x x

σ σ σ
σ

+ −

− −

 ∂ ∂ ∂
− − + − − −  

∂ ∂ ∂ 
∫ ∫ ;               (68) 

5
1 15

1 1
= [ ]tn

tt n n n
c dr f dr g g

s

σ
σ

+ −

− −

 ∂
+ − − −  

∂ 
∫ ∫ .                           (69) 

Now we shall multiply (68) with ( )q s  and (69) with ( )l s . We obtain: 

5 3 4
1 15 3 3

1 1
3 3

= [ ]tt t t

tn t t t
q qc qrc q dr qf dr q g g

s x x

σ σ σ
σ

+ −

− −

 ∂ ∂ ∂
− − + − − −  

∂ ∂ ∂ 
∫ ∫ ;              (70) 
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5
1 15

1 1
= [ ]tn

tt n n n
l lc dr lf dr l g g

s

σ
σ

+ −

− −

 ∂
+ − − −  

∂ 
∫ ∫ .                               (71) 

Using the following equalities: 
5
tt

q

s

σ∂

∂

=
5

5( )
;tt

tt

q q

s s

σ
σ

∂ ∂
−

∂ ∂

  
5
tn

l

s

σ∂

∂

=
5

5( )
tn

tn

l l

s s

σ
σ

∂ ∂
−

∂ ∂

 

equations (70) and (71) reduce to  
5 3 4

1 15 5 3 3

1 1
3 3

( )
= [ ]tt t t

tt tn t t t

q q
qc qrc q dr qf dr q g g

s s x x

σ σ σ
σ σ

+ −

− −

 ∂ ∂ ∂ ∂
− − − + − − −  

∂ ∂ ∂ ∂ 
∫ ∫ ; 

5
1 15 5

1 1

( )
= [ ]tn

tn tt n n n

l l
lc dr lf dr h g g

s s

σ
σ σ

+ −

− −

 ∂ ∂
− + − − −  

∂ ∂ 
∫ ∫ . 

Now let us integrate the previous equations with respect to s  after subtraction. We 

obtain  
5 5 3 4

1 5 5 3 3

1
3 3

( )
=

s
tt tn t t

tt tn t
s

q l q l
cl cq rcq q drds M

s s s s x x

σ σ σ σ
σ σ

+

−
−

 ∂ ∂ ∂ ∂ ∂ ∂   
− − + + − − +     

∂ ∂ ∂ ∂ ∂ ∂    
∫ ∫   (72) 

where 
t

M , whose expression is given in result 3, denotes the twist torque calculated at point 

C . To simplify the previous equations, we use on one hand the geometrical properties 

= 0
q

cl

s

∂
+

∂

 and = 1
l

cq

s

∂
−

∂

, and on the other hand the boundary conditions 5 = 0
tt

σ  and 

5 = 0
tn

σ  on =s s
−

 and =s s
+

. Then equation (72) reduces to  

3 4
1 5 3 3

1
3 3

=
s

t t

tn t
s

rcq q drds M

x x

σ σ
σ

+

−
−

 ∂ ∂
− +  

∂ ∂ 
∫ ∫ . 

Now we multiply equation (55) by r  and integrate it upon a section. We get:  
5 4 3

1 3

1
3

= 0
s

tn tt t

s

r r r drds

r s x

σ σ σ
+

−
−

 ∂ ∂ ∂
+ +  

∂ ∂ ∂ 
∫ ∫ . 

Using the boundary condition 4 = 0
tt

σ  on =s s
−

 and =s s
+

, an integration by part of 
the first term leads to:  

3
1 15 3

1 1
3

=
s s

t

tn
s s

drds r drds

x

σ
σ

+ +

− −
− −

∂

∂
∫ ∫ ∫ ∫ .                                       (73) 

On the other hand, we shall multiply equation (57) with the sectorial area ω  and 
integrate the result upon a section. We get: 

5 4 3
1 13 3 33

31 1
3

=
s s

n t

s s

drds f drds

r s x

σ σ σ
ω ω ω ω

+ +

− −
− −

 ∂ ∂ ∂
+ + −  

∂ ∂ ∂ 
∫ ∫ ∫ ∫ .                 (74) 

Using the property 
4 4 4

4 43 3 3
3 3

( ) ( )
= =t t t

t t

d
q

s s ds s

σ ωσ ω ωσ
ω σ σ

∂ ∂ ∂
− +

∂ ∂ ∂

 

and the boundary condition (54), we obtain  
4 3

1 143 33
3 3 3 31 1

3

( )
= [ ]

s s s
t

t
s s s

q drds f drds g g ds

s x

ωσ σ
σ ω ω ω

+ −+ + +

− −
− − −

 ∂ ∂
+ + − − −  

∂ ∂ 
∫ ∫ ∫ ∫ ∫ . 

With the boundary condition 
1 4

31
= 0

t
drσ

−
∫  on =s s

−
 and =s s

+
, the last equation 

reduces to:  
3

1 14 33
3 3 3 31 1

3

= [ ]
s s s

t
s s s

q drds f drds g g ds

x

σ
σ ω ω ω

+ −+ + +

− −
− − −

 ∂
+ − − −  

∂ 
∫ ∫ ∫ ∫ ∫ . 
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Now let us derive the last equation with respect to 3x . We obtain the relation:  

4 2 3
1 13 33 3

21 1
3 33

=
s s

t

s s

dM
q drds drds

x dxx

σ σ
ω

+ +

− −
− −

∂ ∂
− −

∂ ∂
∫ ∫ ∫ ∫ .                            (75) 

 where the expression of 3M  is given in result 3. To finish let us replace 5
tn

σ  and 4
3tσ  with 

their expressions (73) and (75) in equation (72). We get: 
3 2 3

1 3 33 3
21

3 33

(1 ) =
s

t

t
s

dM
cq r drds M

x dxx

σ σ
ω

+

−
−

 ∂ ∂
− − +  

∂ ∂ 
∫ ∫ . 

Finally, replacing 3
3tσ  and 3

33σ  with their expressions (58) – (59), we obtain the twist 

equilibrium equation of result 3. 

5.4. Bending equations. Result 4: For force levels such as 
6= =

t n
F F ε , 

6= =
t n

G G ε  

and 
5

3 3= =F G ε , the leading terms of the displacements 3u , 
0

Θ , 1
c

u  and 2
c

u  are solutions 

of the following bending equations:  
3 4 4 4 0 2 0

3 1 2 31
1 11 12 1 1 13 4 4 4 2

33 3 3 3 3

=
c c

d

E d u E d u E d u E d d dM
S J J J J P

dxdx dx dx dx dx
ω

µ µ µ µ

Θ Θ
− − − + − − ; 

3 4 4 4 0 2 0
3 1 2 32

2 12 22 2 2 23 4 4 4 2
33 3 3 3 3

=
c c

d

E d u E d u E d u E d d dM
S J J J J P

dxdx dx dx dx dx
ω

µ µ µ µ

Θ Θ
− − − + − − , 

where  

1S =
1

11

s

s

x drds
+

−
−

∫ ∫ ;  2S =
1

21

s

s

x drds
+

−
−

∫ ∫ ;  11J =
1 2

11

s

s

x drds
+

−
−

∫ ∫ ; 

22J =
1 2

21

s

s

x drds
+

−
−

∫ ∫ ;  12J =
1

1 21

s

s

x x drds
+

−
−

∫ ∫ ;  1J
ω

=
1

11

s

s

x drdsω
+

−
−

∫ ∫ ; 

2J
ω

=
1

21

s

s

x drdsω
+

−
−

∫ ∫ ;  1d
J =

1 2

1
2 cos

s

s

r c drdsα
+

−
−

∫ ∫ ;  2d
J =

1 2

1
2 sin

s

s

r c drdsα
+

−
−

∫ ∫  

and 

1P =
1 1

1 1
cos cos [ ] sin sin [ ]

s s s s

t t t n n n
s s s s

f drds g g ds f drds g g dsα α α α
+ − + −+ + + +

− −
− − − −

+ − − − −∫ ∫ ∫ ∫ ∫ ∫ ; 

2P =
1 1

1 1
sin sin [ ] cos cos [ ]

s s s s

t t t n n n
s s s s

f drds g g ds f drds g g dsα α α α
+ − + −+ + + +

− −
− − − −

+ − + + −∫ ∫ ∫ ∫ ∫ ∫ ; 

31M =
1 1

1 3 1 3 3 32 2 3 2 3 31 1
[ ] ; = [ ] .

s s s s

s s s s

x f drds x g g ds M x f drds x g g ds
+ − + −+ + + +

− −
− − − −

+ − + −∫ ∫ ∫ ∫ ∫ ∫  

Proof: Let us start again from equations (68) – (69). We have: 
5 3 4

1 15 3 3

1 1
3 3

= [ ]tt t t

tn t t t
c rc dr f dr g g

s x x

σ σ σ
σ

+ −

− −

 ∂ ∂ ∂
− − + − − −  

∂ ∂ ∂ 
∫ ∫ ;                    (76) 

5
1 15

1 1
= [ ]tn

tt n n n
c dr f dr g g

s

σ
σ

+ −

− −

 ∂
+ − − −  

∂ 
∫ ∫ .                               (77) 

We shall multiply them respectively with cosα  and sinα . Then an integration upon a 
section leads to:  

5 3 4
1 5 3 3

1
3 3

cos cos cos cos = cos
s s

tt t t

tn t
s s

c rc drds p ds

s x x

σ σ σ
α ασ α α α

+ +

−
− −

 ∂ ∂ ∂
− − + −  

∂ ∂ ∂ 
∫ ∫ ∫ ; 

5
1 5

1
sin sin = sin

s s
tn

tt n
s s

c drds p ds

s

σ
α ασ α

+ +

−
− −

 ∂
+ −  

∂ 
∫ ∫ ∫ , 
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with 
1

1
= [ ]

t t t t
p f dr g g

+ −

−

+ −∫  and 
1

1
= [ ]

n n n n
p f dr g g

+ −

−

+ −∫ . Using the following 

properties:  
5

cos tt

s

σ
α

∂

∂

=
5

5(cos )
sintt

tt
c

s

ασ
ασ

∂
+

∂

;  
5

sin tn

s

σ
α

∂

∂

=
5

5(sin )
costn

tn
c

s

ασ
ασ

∂
−

∂

, 

we get:  

 
5 3 4

1 5 5 3 3

1
3 3

(cos )
sin cos cos cos =

s
tt t t

tt tn
s

c c rc drds

s x x

ασ σ σ
ασ ασ α α

+

−
−

 ∂ ∂ ∂
+ − − +  

∂ ∂ ∂ 
∫ ∫  

= cos
s

t
s

p dsα
+

−

−∫
5

1 5 5

1

(sin )
cos sin = sin

s s
tn

tn tt n
s s

c c drds p ds

s

ασ
ασ ασ α

+ +

−
− −

 ∂
− + −  

∂ 
∫ ∫ ∫ . 

By substraction, we obtain finally: 
3 4

1 3 3
11

3 3

cos cos =
s

t t

s

rc drds P

x x

σ σ
α α

+

−
−

∂ ∂
− + −

∂ ∂
∫ ∫ .                                (78) 

On the other hand, let us multiply equation (57) with 1x  and integrate the result upon a 

section. We get 
5 4 3

1 13 3 33
1 1 1 1 31 1

3

=
s s

n t

s s

x x x drds x f drds

r s x

σ σ σ
+ +

− −
− −

 ∂ ∂ ∂
+ + −  

∂ ∂ ∂ 
∫ ∫ ∫ ∫ . 

Then using the equality 
4 4

43 1 3
1 3

( )
= cost t

t

x
x

s s

σ σ
ασ

∂ ∂
−

∂ ∂

, the boundary condition (54) and 

4
3 = 0

t
σ  for =s s

±
, we obtain: 

3
1 14 33

3 1 1 3 1 3 31 1
3

cos = [ ]
s s s

t
s s s

x drds x f drds x g g ds

x

σ
ασ

+ −+ + +

− −
− − −

 ∂
− + − − −  

∂ 
∫ ∫ ∫ ∫ ∫ .              (79) 

Now let us derive equation (79) with respect to 3x . We get 

4 2 3
1 3 33 31

1 21
3 33

cos =
s

t

s

dM
x drds

x dxx

σ σ
α

+

−
−

 ∂ ∂
− + −  

∂ ∂ 
∫ ∫ .                                 (80) 

Adding equations (78) and (80), we have 
3 2 3

1 3 33 31
1 121

3 33

cos =
s

t

s

dM
rc x drds P

x dxx

σ σ
α

+

−
−

 ∂ ∂
− + − −  

∂ ∂ 
∫ ∫ . 

Finally, replacing 3
3tσ  and 3

33σ  by their respective expressions, we obtain the bending 

equation in the direction 1e  of result 4. The bending equation in the direction 2e  is obtained 

in the same way, by permutation of the indices. 

6. Comparison with Vlassov model. 

To compare the one-dimensional thin-walled beam model obtained at results 1 to 4 to 

Vlassov model, we shall first go back to the initial dimensional domain *
Ω  and to the 

dimensional variables *
t

u , *
n

u , *
3u , *

f  and *
g . To do this, let us define 

*0 0 0 *0 0 0 *0 0 0
3 3 3= = ; = = ; = =

t tr t t n nr n n r t
u u u hu u u u hu u u u huε .                     (81) 

We then have the following result: 

Result 5: For force levels such as 
6= =

t n
F F ε , 

6= =
t n

G G ε  and 
5

3 3= =F G ε , the 

displacement 
*0 *0 *0

3( , , )
t n

u u u  is of Vlassov type: 

*0
t

u% = * * * *0
1 2cos( ) sin( ) ( )c c

u u q sα α+ − Θ ;  *0
n

u% = * * * *0
1 2sin( ) cos( ) ( )c c

u u l sα α− + + Θ ; 

*0
3u% =

* * *0
* * * *1 2
3 1 2* * *

3 3 3

c c
du du d

u x x

dx dx dx

ω
Θ

− − − .                               (82) 
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Starting from result 1 and from the dimensional analysis on the geometric parameters 

performed, the proof of this result does not constitute any difficulty and is left to the reader. 

We just need to set * * * * 2 *0 0
1 1 2 2 3 3= , = , = , = , =c c c c

u hu u hu u hu dε ω ω εΘ Θ  and to use the 

relations 2/ =h L ε  and 2=hL d  between the small parameters. 

In the same way, we shall go back to dimensional variables in traction, twist and 

bending equations of results 2 to 4. However, we will not give here the complete 

dimensional equations, but only the reduced ones which are sufficient for a comparison with 

Vlassov model. We recall that the one-dimensional equations reduce to a much more simple 

form if they are written in a particular base, called "reduced basis". In this reduced basis, the 

directions 1e  and 2e  correspond to the principal inertial axis of the profile. Moreover the 

origin of the frame coincides with the center of gravity of the profile and the origin of the 

sectorial area with the shear center. We then have the following result whose proof does not 

constitute any difficulty and is left to the reader:  

Result 6: For force levels such as 
6= =

t n
F F ε , 

6= =
t n

G G ε  and 
5

3 3= =F G ε , the 

leading terms of the displacements 
*
3u , 

*0
Θ , 

*
1

c
u  and 

*
2

c
u  are solution of the following 

reduced one-dimensional equilibrium equations:  
*02
3* *

3*2
3

=
d u

ES P

dx

− ;                                                  (83) 

*0 *04 2 *
* * * 3

* * **4 *2 *
3 3 3

=
t

d

d d dM
EJ J M

dx dx dxω ω ω

µ
Θ Θ

− + ;                               (84) 

* *04 2 *
1* * * 31

11 1 1*4 *2 *
3 3 3

=

c

d

d u d dM
EJ J P

dx dx dx

µ
Θ

− + ;                                   (85) 

* *04 2 *
2* * * 32

22 2 2*4 *2 *
3 3 3

=

c

d

d u d dM
EJ J P

dx dx dx

µ
Θ

− + .                                 (86) 

The dimensional expressions of the forces and of the geometric constants involved in 
result 6 may be obtained easily fom results 2 to 4. We shall quote that the kinematics, the 
one-dimensional reduced traction and twist equilibrium equations of results 5 and 6 
correspond exactly to Vlassov ones [47]. However the one-dimensional bending equations 
(85) – (86) differ from Vlassov ones which write (in the reduced basis): 

*4 *
1* * 31

11 1*4 *
3 3

=

c

d u dM
EJ P

dx dx

+ ;                                               (87) 

*4 *
2* * 32

22 2*4 *
3 3

=

c

d u dM
EJ P

dx dx

+ .                                              (88) 

Therefore, at the difference from Vlassov model, the bending equations (85) – (86) contain a 

supplementary term coupling twist and bending effects. This coupling term is linked to the new 

geometrical constants *
1d

J  and *
2d

J  and does not seem to have any equivalent in the literature. It 

corresponds most probably to a correction at the second order of Vlassov model. Thus the model 

obtained by asymptotic expansion in this paper should improve Vlassov one where the twist 

angle and the bending displacements are uncoupled. (We recall that from Vlassov model, an 

external bending loading whose resultant induces a torque, will induce not only a bending dis-

placement but also a twist. In contrary, a torque will induce only a twist, but no bending, unlike 

the model obtained in this paper where these two effects are coupled). 
Let us quote that such a limitation of Vlassov theory (lack of coupling) already have been 

noticed by other authors [5, 6, 23, 43]. To improve Vlassov model, the authors proposed to 
add directly supplementary terms characterizing coupling effects in equilibrium equations. 
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7. Conclusion. 
In this paper we deduced by asymptotic expansion a one-dimensional linear model for 

thin-walled rods obtained for a strongly curved profile subjected to low force levels. The 
obtained kinematics, the one-dimensional traction and twist equilibrium equations of results 
1 to 3 correspond exactly to Vlassov ones [47]. However, whereas Vlassov approach relies 
on a priori physical assumptions, with our approach the kinematics and equilibrium 
equations are directly deduced from the three-dimensional equilibrium equations for the 
level of applied forces considered. Thus the domain of validity of the obtained model can be 
specified precisely thanks to the dimensionless numbers introduced. 

Another major result is that that this asymptotic approach leads to an explicit analytical 

expression of the geometrical constants involved in the one-dimensional equilibrium 

equations. In particular, we obtain a general analytical expression of the twist rigidity *
d

J
ω

, 

whereas in the literature only an approximate expression depending on an empiric 

coefficient is given [47]. 

Finally, it is important to notice that the one-dimensional bending equations of result 4 

differ from Vlassov ones. At the difference from Vlassov model, we obtain a supplementary 

term coupling twist and bending effects. This coupling is due to the new geometrical 

constants *
1d

J  and *
2d

J  and does not seem to have any equivalent in the literature. 

 

 
Р Е З ЮМ Е .  Запропоновано отриману асимптотичним методом одновимірну модель  для тон-

костінного стержня з відкритим сильно скривленим поперечним перерізом, яка враховує взаємо-

зв’язок між скручуванням та згином. За допомогою аналізу розмірностей в лінійних тривимірних 

рівняннях рівноваги знайдено безрозмірні величини, які характеризують геометрію стержня та рівень 

прикладених сил. Для заданого рівня сил методом асимптотичного розкладу отримані порядок змі-

щень та відповідна одновимірна модель. У випадку низького рівня сил отримано одновимірну мо-

дель, кінематичні рівняння, рівняння кручення та згину відповідають моделі Власова. Однак ця мо-

дель враховує в рівняннях згину взаємодію між згином і крученням на відміну від моделі Власова, 

яка таку взаємодію не враховує. 
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