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Abstract. A linear one-dimensional model for thin-walled rods with open strongly
curved cross-section, obtained by asymptotic methods is presented. A dimensional analysis
of the linear three-dimensional equilibrium equations lets appear dimensionless numbers
which reflect the geometry of the structure and the level of applied forces. For a given force
level, the order of magnitude of the displacements and the corresponding one-dimensional
model are deduced by asymptotic expansions. In the case of low force levels, we obtain a
one dimensional model whose kinematics, traction and twist equations correspond to
Vlassov ones. However this model couples twist and bending effects in the bending
equations, at the difference from Vlassov model where the twist angle and the bending
displacement are uncoupled.
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1. Introduction.

Thin and thin-walled structures (plates, shells, rods and thin-walled rods) are widely
used in industry because they provide a maximum of stiffness with a minimum of weight.
However there exists many different models in the literature. Therefore engineers must
know a priori their respective domain of validity and what model to use in function of the
given data of the problem (geometry of the structure, applied loads, boundary conditions).

Classical models (Kirchhoff — Love, Koiter, Bernouilli, Vlassov...) are generally
obtained from three-dimensional equilibrium equations by making a priori (kinematic and
static) assumptions on the unknowns of the problem. Therefore, the domain of validity of these
classical models with respect to the given data of the problem is difficult to specify rigorously.

Asymptotic methods enable to deduce rigorously plate, shell and rod models from the
three-dimensional equations without making any priori assumption. In linear plate and shell
theory, since the pioneering work of Goldenveizer [11], there exists a large literature on the
subject [2, 7, 38 — 41].

In linear theory of rods, the first works on the subject are due to Rigolot [33]. More
recently, other justifications of linear and non linear rod models by asymptotic expansion
have been developed in [3, 20 — 22, 42]. Let us also cite the synthesis [46] of previous works
[44, 45] which recall the different possible approaches in linear theory of elastic rods
(displacement formulation, mixed formulation in stress-displacements).

These results then have been extended to thin-walled rods. The approach used is based
on the asymptotic behavior of Poisson equation in a thin domain when the thickness tends
towards zero [34, 35, 46]. This way, Rodriguez and Viafio [36] have justified a linear elastic
model of Vlassov for thin-walled rod by asymptotic method similar to Vlassov one.
However their approach uses "a priori" scaling assumptions on the displacement field which
is an unknown of the problem. Moreover, it is based on an expansion at the second order of
the equations with respect to the diameter £ and then the relative thickness 77 is assumed to
tend towards zero. These two operations do not a priori commute and the result depends on
the choice made (see fig. 1).
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Existing asymptotic approaches.

This is a classical result well known for multi-scales asymptotic approaches. It is
encountered in shell theory (with the relative thickness and the shallowness as small
parameters), in homogenization of composite or periodic structures [1, 9, 19].

We propose in this paper to use the constructive approach based on asymptotic
expansions, already developed by the authors for plates [24 — 31], shells [8, 16, 17] and thin-
walled rods [12, 13, 18], to deduce a linear model for thin-walled rod from three-
dimensional equations. The approach used is based on a decomposition of the three-
dimensional equations on Frenet basis of the initial configuration. Then a dimensional
analysis of equilibrium equations lets appear pertinent dimensionless numbers
characterizing the geometry and the applied loads. These numbers are measurable and
enable to define the domain of validity of the obtained model. Thus the order of magnitude
of the displacements and the corresponding asymptotic model are directly deduced from the
level of applied forces. This constitutes the constructive character of our approach.

In this paper we limit our analysis to thin-walled rods with strongly curved profile
subjected to low force levels. In lemma 1, we begin with deducing the order of magnitude of
the displacements from the level of applied forces. Then the asymptotic expansion of
equations leads to the kinematics and to the one-dimensional equilibrium equations of
results 1 to 4. The kinematics and the one-dimensional traction and twist equations
correspond exactly to Vlassov ones [47]. However, whereas Vlassov theory relies on a priori
physical assumptions, in the approach developed here the unknowns of the problem are
directly deduced from the three-dimensional equations.

On the other hand, the one-dimensional bending equations obtained in result 4 differ
from Vlassov ones. They involve a supplementary term coupling bending and torsion
effects, whereas they are uncoupled in Vlassov model. (Such a limitation of Vlassov theory
already have been noticed by other authors [5, 6, 23, 43]).

We recall that in linear elastic theory, the thin-walled rods possess the following
particular property: an external bending loading whose resultant induces a torque, will
generally induce not only a bending displacement but also a twist. In contrary, a torque will
induce only a twist, but no bending, at the difference from the model obtained in this paper.
That is why we call it model "with coupling between twist and bending". However, let us
notice that such a coupling between twist and bending effects exists in the models used for
flexural-torsional buckling or in dynamics models for flexural and torsional vibration
analysis (see for example [14, 15, 32, 37, 48]), but not for classical linear elastic analysis.

2. The three-dimensional problem.
We assume once and for all that an origin O and an orthonormal basis (e;,e,,e;) have

been chosen in R*. We index by a star (*) all dimensional variables and the variables

without a star will denote dimensionless variables. Let @ be an open cylindrical surface of
R?, (Oe;) its axis, whose length is L and diameter d . We note ;/Z, and }/Z its lateral

boundary, }/: = x {0} and }/; =0 X{L} its extremities.
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Fig. 2
Scheme of the rod and of the profile in the plane of a section

Let us consider now a thin-walled rod with open cross-section and 2/ thickness, whose

middle surface is @ . The thin-walled rod occupies the set Q=0 X[—=h,h] of R? inits
reference configuration. We call T} = yx]—h,h[ and T, = ¥,x]—h,h[ the extreme faces,

FZ = }/;x]—h,h[ and 1"2 = 7Zx]—h,h[ the lateral faces, 1"1 = x{+h) the upper and

lower faces. Let M~ be a generic point of the beam. We decompose the vector OM " as
follows:

0M*=x;e3+G*C*+C*m*+r*n s (1)
where x; is the coordinate of the current cross-section containing M~ on the axis (Ox; ),

G" the point of intersection between the axis (Ox; ) and the current cross-section, C " an
arbitrary chosen point in the plane of the cross-section (see Fig. 2) located by its cartesian

coordinates (xf*,xg*) ,and r the thickness variable. We call C* the intersection curve

between @ and the cross-section. The orthogonal projection m of M~ on the middle

surface is located by its cartesian coordinates x =(x;,x,) or by its curvilinear abscissa s
along C . The origin s, of the curvilinear abscissa is an arbitrary chosen point of C . We

note n the unit normal and ¢ the unit tangent vector of C * . Moreover, we call [* and q*

the coordinates of the vector C'm" in the basis (t,n) . Finally, we call o the angle (e,t)

and ¢ the curvature of the curve C" (see fig. 2).

In what follows, we consider only thin-walled rods such as %<<1, E<<1 and

hllc'll,<<1. We assume that the rod is subjected to the applied body forces
fr=ft+fin+fie;:Q >R and to the applied surface forces
¢ =g t+g n+gyey: Ty, — R®. Moreover, the rod is assumed to be clamped on its

extremities I and T, and free on its lateral faces I', and I';. The unknown of the

8
problem is then the displacement U " Q" - R*. Within the framework of linear elasticity,

the displacement U* and the Cauchy stress tensor o satisfy the linear equilibrium
equations:
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Div'e = —f° in Q)
Ut o= 0 on FB 1
o.N = g on Iy
ol = 0 on Fé’d,

where N and T denote the unit outward normal vector to the upper and lower faces and to
the lateral extremities respectively. Within the framework of linear elasticity, the

constitutive law of the Hookean material considered writes o = ﬂTr(e*)I +2,Ue*, where

. _1[oUu"  9U" : ,
e =—| — +—— | denotes the linear strain tensor, A and u denote the Lamé constants
2| oM~ oM

of the material, and the overbar the transposition operator. Finally the boundary conditions
on F:, UFZ are considered on average upon the thickness, in order the twist to be of the
same order as the bending in the asymptotic model obtained.

3. Dimensional analysis of equilibrium equations and reduction to a one-scale

problem.
First, we decompose the equations such as to separate the axial components from the

components in the plane of the cross-section. To do this, let us decompose U “ on Frenet
basis (f,n,e;) of the initial configuration as follows:
U =ut+u,n+uzes. 3)
Then the gradient of the vector U * can be decomposed in the basis (¢,n,e;) on the
following form:

ds or  0xy
. J(oUT . ) U U . A
F = ds or ox; | = |k L+cu, 1 S
oM Os or  0Oxy
& ou, a_ug ou,
| s or ax; ]
: 0 -1
where &~ :1 — and where A=|1 0 | denotes the two-dimensional matrix of the
—rc

wedge product. In the same way , the three-dimensional equilibrium equations can be
decomposed in the basis (t,n,e;) and writes in Q"

aam +k* 80” —2C*O'* +86t3 ——ft*;
s a

* * tn Pl
or X5

a* *
r

aO’:n * 80': % % % % 80n3 *
— 4k a—+C o,—C O, +_~:_fn;
A

do. ey . d0, ‘
B B o, [ = fy.
ar* aS* n3 3
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The detailed expression of the components of o will be given directly in their
dimensionless form (4). The associated boundary conditions on the upper and lower faces

Fi are given by:
* +% * +% * +%
Ow=8: » Oun =8&n » 0,3=83
and the boundary conditions on the lateral extremities 1"; 4 reduce to:
o,=0, o, =0, 0,;=0.
It is important to notice that a boundary layer with respect to the shear stress 0';3

appears on the free lateral extremities. This is a classical phenomenon in plate and shell
theory. In order to avoid this boundary layer which is not the subject of this paper, we relax

the boundary conditions on F;d as follows: I_th'; dr=0.

3.1. Dimensional analysis of equations. Let us define the following dimensionless
physical data and dlmensmnless unknowns of the problem

% * * % * f f4<
u Lt X S r C
u = t; u = n’ — 3; X 3’ §=—ir=—; c=—; f Jr . f—
t n 3 3= L d h
Uy Uy, U3 ¢ frt frn
_ J3 . _ & . _ 8. _ &
f3 - s gt - s gn - s g3 - ’
fr3 8t 8m 813

where the variables indexed by (,) are the reference ones. The new variables which appear

(without a star) are dimensionless. To avoid any assumption on the order of magnitude of
the displacement components, the reference scales u,., u,, and u;, are firstly assumed to
be equal to 4. Thus we a priori allow small displacements in the framework of the theory of
linear elasticity.

In a natural way we introduce ¢, =ll¢" Il which denotes the maximum of curvature
(the smaller radius of curvature) of the middle surface @ . As in shell theory, the order of
magnitude of the curvature is a fundamental data in the asymptotic expansion of equations.

Therefore we will have to distinguish the rods with shallow cross profile from the rods with
strongly curved profile.

* 1
First the dimensional analysis of the coefficient k leads to k=T. Setting
—he,rc

v = hc, , the assumption of thin walled-rod ensures that v < 1. We then have the following

expansion k =1+ vrc+ (Vrc)2 +....
On the other hand, the dimensional analysis of the stress tensor leads to:

O-[ t O-[ n O-I‘ 3
o = Om Ow Ou3

O3 Ou3 O3
with

Oy =

...](n% —veu, j + ,b’ng% ;
ds

0x3

= (ﬁ+2) “n +ﬁ[1+wc+(wc) +...](77% j+ﬁnea
A

X3

Oy = ﬂaaur" +ﬂ[1+vrc+(vrc)2 +...](

ni— VCMH\J+(ﬁ+ 2)773
os

3
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o, = %+ [1+vre+ (vre)? +...](7]aﬁ+ ch,j ;
or Os
O, = [1+vrc+(vre) + ...]77%+ 775%, O, = %+ UV% , 4
s 0x3 or 0x3

where we set & = UHO, € :% , :% and = i . Now let us denote @ the dimensionless
y7,

middle surface obtained from a)*, whose current point will be noted m . Its associated

curvature C is obtained by dimensional analysis of C " . Then the dimensional analysis of
the three-dimensional linear equilibrium equations leads in Q = wx]—-1,1[ to:

9% + (1+Vrc+(VrC)2+---)(77%_2V60-mj + ’75% =kt
or ds 0x;
_aO',m + (1+ Vrc+(Vrc)2+...)(77%+VCO'n_Vco'nnj + 778% = _ann;
or os 0x;
9%, + (1+V}’C+(VI’C)2+---)(n%_vco-n3j + ’7"% =k fs )
or os X3

The associated boundary conditions on the upper and lower faces I',. become:
O = Grgti’ Oun = Gng}f’ On3 = G3g3i . (6)
Therefore, this dimensional analysis naturally reveals the following dimensional

numbers characterizing the thin-walled rod problems in linear elasticity (they are

measurable data of the problem and must be considered as given data):
d h h h
£€=—;n=—; v=he; F = f”; Fn=—f’";
L d u u

=, g 8, g 8w, g -8,
H H H u
1) The shape ratio £ characterizes the inverse of the shooting-pain of the rod. This is a
known parameter of the problem which satisfies € <1.

ii) The dimensional number 77 denotes the ratio between the thickness & of the rod to
the length of its profile. This number is also a data of the problem which satisfies 7 < 1.
iii) The shape ratio v =hc, is the ratio between the thickness to the smaller radius of

curvature of the middle surface @ of the rod. Its is a given geometrical data of the problem.
iv) The force ratios F;,G; (i€ {t,n,3}) represent respectively the ratio of the resultant

on the thickness of the body forces (respectively of the surface forces) to x# considered as a

reference stress. These numbers only depend on known physical quantities and must be
considered as known data of the problem.

3.2. One-scale assumption. To reduce the problem to a one-scale problem, £ is chosen
as the small reference parameter of the problem. (If not we have multi-scale problems which are
much more complicated. It is not the subject of this paper).

The other dimensional numbers are then linked to €, or more precisely to the powers
of £.In a natural way, as in shell theory, we have to distinguish thin-walled rods:

with strongly curved profile where v=¢;

with shallow profile where v = £ .

This distinction is fundamental because these two families of thin-walled rods do not
have the same asymptotic behavior.

On the other hand, three cases can be distinguished and studied:

the thick rods where 77=1. This is not the subject of this paper;
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the thin-walled rods where 77 = ¢ . It is the case studied here;

the very thin-walled rods where 77=¢”, p >1. This case is not studied in this paper.

Finally, the applied loads are an essential given data of the problem. In the framework
of a one-scale asymptotic expansion, the force ratios must be linked also to &. This is
equivalent to fix the order of magnitude of the applied forces which are given data. In the
case of thin-walled rods with strongly curved profile, we will consider applied forces such
as: F,=G,=¢°  F,=G,=¢", F=Gy=¢&.

These force ratios, which characterize the level of applied forces, are chosen in order all
kinds of loading to be involved at the same order in the asymptotic one-dimensional
equilibrium equations.

In the sequel, we shall consider a thin-walled rod with a strongly curved profile

corresponding to 7=V = ¢, submitted to force levels such as F, =F, = £, G, =G, = £°

and F;=G;=¢& . The problem then reduces to a dimensionless one-scale problem, which
can be easily written from (5) and (6), using the expressions (4) of the stresses.

4. Asymptotic expansion of equations.

The standard asymptotic technique then proceeds as follows. First we postulate that the
solution U = (u,,u,,us;) of the problem admits a formal expansion with respect to the

powers of £

ug)+€(u1 ul ué)—i—ez(uz u? u32)+.... (7)

0 0
(u[’un’u3)=(u u t>YWn» t Y%

1°>"n>

The expansion of U with respect to £ implies an expansion of the components of the
stresses o with respect to £ as well. Then we replace u,, u,, u; by their expansions in
equilibrium equations and we equate to zero the factor of the successive powers of & . This
way we obtain a succession of coupled problems F,, A, P, ... . Its resolution leads to the
search asymptotic one-dimensional model corresponding to the force level considered.

It is important to notice that with the approach developed here, the order of magnitude
of the displacements (which are unknowns of the problem) are directly deduced from the
level of applied forces. In particular, for the force levels considered here, the axial displacement
is one order smaller then the other ones. This is the result of the following lemma:

Lemma 1.
For force levels such as F, =F, = 6‘6, G =G, = £ and F=G;= e , we have ug =0.
The proof of this lemma is rather long and technical. The demarche is similar to the

proof of result 1 and is not detailed here. Hence, for the level forces considered, the
reference scales of the axial displacement u;, = h is not properly chosen. In order for u; to

be of the order of one unit, the reference scales of the displacement must satisfy u;, =¢&h.

Therefore the new reference scale for the axial displacement u, that we have to consider is
us, =€h. The other reference scales for the tangential and normal displacements
u,. =u,, = h stay unchanged.

Remark 1. It is important to notice that this lemma only leads to the right scalings for
the displacements corresponding to the level of applied forces considered. However, it

would have been possible to start directly from these right scalings or reference scales for
the displacements, as it is often made in the literature.

5. The one-dimensional model.

In the last section, we have determined the right reference scales (or equivalently the
order of magnitude) of the displacements corresponding to the force levels considered. In
this section, we perform the asymptotic expansion of equations which leads to the search
one-dimensional model.
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According to the force levels considered F, = F, = £, G =G, = £ and F=G;= e,
the dimensionless equilibrium equations must be written again with u;, =&h and
u, =u,, =h as reference scales. The dimensionless components of the displacement will
still be noted with u,,u, and u;. Thus for the level forces considered here, the new
dimensionless equilibrium equations are the same as the previous ones (4) — (6). Only u;
must be changed into &u; in the new expressions of the components of the stresses. Then
we assume again that there exists a formal expansion with respect to &£, similar to (7), of the

new dimensionless solution (u,,u,,,u;) .

5.1. A Viassov kinematics. Result 1: For applied force levels such as F,=F, = &5,
G, =G,=¢" and F;=G,=¢, the leading term (u°,u’,ul) is a displacement of Viassov
type which satisfies:

i’ = uf cos(@) + s sin(@) — q()0"; i’ = —u sin(@) + it cos(@) +1(5)@";
o — _daf  duy  d©°
Uy = U3 —X|—— — X, -——,
X3 dx, dx;

where u; denotes the axial or traction displacement; u; and u; denote the tangential

displacements of the point C ; ®° denotes the angle of rotation around the axis (C,e;); @
is called the sectorial area defined as follows; d a)/ ds=—q.

Proof: The asymptotic expansion of the new dimensionless equations leads again to
problems F,, B,B....

Problem Fy:

The cancellation of the factor of £° leads to F, which can be written:

8021 -0
or o, = 0

in Q forr=%1
Bl

nn O nn

or

Therefore, we get 0'2[ = O'Sn in Q which implies that all the components of ¢ are

equal to zero. Then writing the components of the stresses in terms of displacements, we
0 0

. ou u . . . . L
obtain —-~=0 and —% =0 in Q, or in an equivalent way (in the next, for the simplicity of
r r

the notations, we will adopt the following ones: a function # which depends only of (s, X3) will be
noted I ; a function i which depends only on (x3) will be noted U ):
0_ ~0 0_ ~0
u, =u; (s,x3), u, =u,(s,x;). 8)
Let us now prove that uj =iy (x3) .
Problem P, :

The cancellation of the factor of &£ leads to problem F which easily implies that
1

o, = O',Im = o;ll3 = 0. Writing the stresses in terms of displacements, we obtain in Q:
1 - ~1
ur=—l/?r+u,; 9
1 B o
u, =————WY,r+1iu,; (10)
n ﬂ—i— 2 n n
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W =i (11)

with
o _ 0, o .o _0 -0
=—t+cu,, Y,=—--ci,. 12
ey 0 Yn =0 (12)
From the last expressions, the components of the stresses at order 1 reduce to:
ou! _ B+1
1 0
o, =p—"+(2+ =4—v,; 13
V=B QD= (13)
1 ﬁ _
O3 = =2———V,; 14
X 25 (14)
i)
ol =25 (15)
ds

The boundary conditions on the lateral surfaces at order one for s=s, and s=s, write

o) =0 and
[{ohar=0. (16)
Problem P, .
The cancellation of the factor of &* leads to problem P, which reduces in  to
do,, doy, a0, ' Ao,
= =0; M tco,=0; —2=0 17
or  0ds or " or .
with the associated boundary conditions for r = %1
0. =0, 02, =0, 05=0. (18)

Let us integrate equation (17) upon the thickness. With the boundary condition (18), we
obtain J'_llatltdr =0. Replacing 6,11 with its expression (13) in terms of displacement, we get
#° =0. Then, from (9) — (14) we deduce that o}, =03, =0 and u} =i .

Then problem P, leads, according to the boundary conditions, to 7 = 62, =03 =0.
The last equations are equivalent in terms of displacements to:

-0 2
e ”5‘ﬁfza$’f§—fz'/” degered 09
3

with (,//1— 1 and 11/l ——c

From the last expressions of the displacements, we obtain the following expressions of

the components of the stresses o’ at order two:

oy WBr1
2y B+1 0y, . 20
O (B+2) os r+4 B+ 2'//n (20)

-0
2 B Wiy B @1
(f+2) 0s B+2

o= s +8x3.

The associated boundary conditions on the lateral surface s=s_ and s=s, write

2 _
O33=—

(22)

o2 =0 and
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'[_110',23dr =0. (23)

That leads, in terms of displacements, to y?,ll(s ,0) = y?,ll(s +.0)=0 and
) ~ ~0 ~0
aa%(s_):%(m:m PAM i }( )= { ”3+i}(s+):o. (24)

ds  Ox os  Ox,
Problem Pj.
The cancellation of the factor of & leads to problem P, which reduces in Q to:
3 2
do,, do, 0. 25)
or  0s
do 3
Ly co,=0; (26)
or
3 2
d0,,; N d0;; ~0 @7
or s
with the associated boundary conditions for r =1
o, =0; o =0; (28)
0,=0. (29)

As previously, let us integrate equation (26) upon the thickness. With the boundary

condition (28), we obtain j_lla,%dr—o According the the expression (20) of o, we get

¥ =0. Thus expressions (20) and (21) of 6> and o3 reduce to:
=0
2oy LW, B W (30)
(B+2) os (B+2) s

In the same way, we shall now integrate (27) upon the thickness. Using (29), and then
(23) and (22), we obtain:

~0 5=0
% + ou;
ds  Ox;

which is nothing else than the non-distorsion Vlassov assumption obtained for the leading
term of the expansion of the displacement. Using the previous results obtained, the
expressions of the stresses at order three reduce to
+19° -1 +19§, r* -1
ROV AL Lkl W NPV A2 XL/ WP PN

5

o). =
" [)’+2 os 2 i B+2 0s 2
On the other hand, according to (32), the boundary conditions at order three

=0, (31)

o) (5_,x3) = 0, (5,,%3) =0, leads in terms of displacements to:

25 2
8 (_, 3)—a L(s,,%3)=0. (33)

Problem P, .

The cancellation of the factor of &' leads to problem P, which reduces in Q to:

do, do, a0,
—n D 0' +re—L=0; 34
or s Os )
4 3 4 3 >
90, 9% +co, —co, +rctor=0; 90,3, 995, 903 _ 0, (35)
or s or s Oxg

with the boundary conditions for r=*1
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ot =0; (36)
o =0; (37
ol =0. (38)

Using the boundary conditions (36) and (37), an integration of equations (34) and (35)
upon the thickness lead to:

1 86,3, 3 ao_tzt —0-
J_l(—as 2oy oSy Jdr=0: >
3
J.ll[ag&+ co) —coo + cmO',Z,er dr=0. (40)
-1 9s

In the same way, after multiplying equations (25) and (26) with rc, the integration upon
the thickness leads to

1 1 do
_.'_ICO';dr = J._lrca—s”dr ; 41
[ condr=[" raidr. (42)
We then use (41) [respectively (42)] to simplify (39)[respectively (40)] which reduce to
3
{129 o3 |ar=0; (43)
-1l 9s
3
[ 9% 4 o2 | ar=o0. (44)
-1l os
On the other hand, let us derive (44) with respect to s . We have:
2 3 3
jl 9o O;’” +£a,3, +¢2% | gr o, (45)
-1 9s ds s

Now using (43) and (44) to eliminate 6,31 in (45), we obtain according to (32):
O 1dedy) L0

3t cds 95 aszt =0, whose  general solution s given by

2~
aa‘/;? = Acos(@) + Bsin(@) , with c(s) = Lfl—a . Using the boundary conditions (33) and (24),
s s
oy,
s
solution of the following differential system:

=0 or equivalently (/"/? = @)(x3) . Therefore the tangential displacements are

we obtain

dii,

_ ——ci’=0;
¥, =0 ds "

0_ &0 0= 0
y, = © il 0 =
Vi n el =@,

N
In a Cartesian basis, we get after a few calculations
i =uf —(x,—x5)0"  and @) =us +(x,—x{)@",

where u;” and u; represents at the leading order the displacements of the arbitrary point C
in the directions e, and e, . The angle ®° characterizes the rotation of the section around
the axis (C,e;). The point C is generally identified to the shear center of the sections. In
the basis (t,n), we then have:

133



i = ufcos(@)+us sin(a) - q(s)@%

i’ = —ufsin(a) + it cos(a) + ()0

with
I(s) = (x—x)cosa+(x,—x3)sine,
q(s) = —(x;—x{)sina+(x, —x5)cosc.

This last expression characterizes a rigid displacement in the plane of the sections and is

.. . . . . . ~0 ..
similar to Vlassov kinematics. (Excepted for the sign of ¢ in the expression of u; . This is due to

an orientation of the normal 1 opposite to Vlassov one). Moreover, the axial displacement ug
can be determined from (31). We obtain the expresion of 122 of result 1.
5.2. Traction equation. Result 2: For applied level forces such as F,=F, = £,

G =G, = % and F,=Gy= e, the leading terms of the displacements u;, Qe°, u and uy

2— 3—c 3—c
satisfy the following traction equation: ES d L? —-LS, d M31 -ES, d u32 -
dx; dx; dx;
d’@’
—ES w? =—uP;, where E and 1 are respectively Young modulus and Lamé coefficient
X3

of the material, and where:
S = Ij-[—ll drds; S, = ffj_lla’ drds: S, = [ [ rs
Sy = [ mdrds: Py= [] fydrds+ [ gt - g51ds |

Proof: We just proved that 1/7? =@". So we have 0'?, = 0'53 =0 and O'?n = 0'3,1 =0, that
leads to the following expressions of the stresses at order three:

~ ~0
ol =—4 p+1 ay”lr+4ﬂ+1y72+2 S

= " ; (46)
(f+2) ds p+2 B+2 0x3
03=-2 b a‘%}}"-i-z p V72+4ﬂ+laﬁ§)' =B_ﬁ§+a_ﬁ,l_2d@)°r. 47
BT T(B+2) s f+27" T p+2ax 7T 9s ox;  dy
Problem P, then reduces in Q to:
4 4
—a(_;‘m +aai’3f=0; —aadnn +co)=0; (48)
r A r
4 3
—85:3 +—a§sf3 -0. (49)

Using (37), the integration of equation (48) upon the thickness leads to J.ilof,dr:O.

~0
Then replacing 0',3t with its expression (46), we get 4ﬂl]fi +2iaﬂ=0. On the
p+2 L+2 dxy

other hand, using (38) the integration of equation (49) upon the thickness leads to
J.ilo%dr:O. According to (47), we have equivalently in terms of displacements
(aa;) / os + (aﬂ}) / dx; =0, and the expressions of the stresses reduce to:
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_ , » _
3 _ 4 Bl oW, 5 _ , B oy 3B+20d 5 ,d® 50)

o, = r;, O33=-— 5 3= r.
(B+2) os (f+2) os B+1 ox, dx;
This last equation leads to 0'23 =0 according to (38) and (49).
Problem Py :
The cancellation of the factor of & leads to problem Py which reduces in Q to
5 4 3 3
9%, 9% _yogt 4 re9% 4 9% . (51)
or s ds  Oxy
4
aoj’”‘ + - 99, +coh —con +rc*o =0; (52)
or s
4
80_33 + ao_t3 + a0-33 _f3 , (53)
or s 0x3
with the boundary conditions for r=*1
0,=0, 0,=0, o,=g;. (54)

Using the boundary condition (54), an integration of (53) upon the thickness leads to:

J- J' [ao-ﬁ Jdd __.[ J'f3drds .[j[g;—gs_]ds'

Using the boundary condition J'_lofgdr:O on the free lateral surface for s=s_ et

s =s,, we obtain:
1 80'33 sy 1 Spr o+ _
[ 2 = s 1 - 51
Finally replacing 0'§3 with its expressions (50), we obtain the traction equation of result 2.
5.3. Twist equation. Result 3: For applied forces such as F,=F,=¢°, G, =G, =
and Fy=G;= £, the leading terms of the displacement u,, e’, ul and u, satisfy the

following twist equation:

3— 4—c 4—c 450 250
£ wdu33_£‘]1wdl/f11_£‘]2wd Litz _E‘]wa)d? ded(az =_Mt_dM3’
Mo dxy U dx; U dey U dx; dx; dx,

where:
= I:*J._lla) drds; J ,, = I:*J._lla)z drds; J,, = J.SJ’I_llxla)drds; Jrp = J.:J’I_llxza)drds;

Ty = j:+j_112r2(1—cq) drds; My = j:+ j_llwf3 drds + j:+w[g; —g3lds,

(e[, dras+[*i1g} - g das [ [ f, drds - ["*qlg} - g 1ds.

Proof: Let us follow step by step for equation (51) and (52) the same demarche as for
problem P,. We can prove in the same way that l]/tl does not depend on x; and we set
¥ =©'(x;) . Thus the displacement at order 1 has the same form as the displacement at the
leading order. On the other hand, according to the previous result, problem £ reducesin Q to:

90, N Elep N a0,

=0; 55
or os 0x3 (55)

ﬁmaﬁ, =0; (56)
-
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ao_5n3 " 80'?3 " 80'33

-f3, 57
or s 0x3 & ©n
with the following expressions of the stresses at order three: 0',3t =0 and
3B+2 ity
o3 = 3B+2 905 (58)
L+1 ox,
a0
oh=— 9 (59)
dxs

Problem F :

The cancellation of the factor of £° leads to the following tangential and normal
equations of problem F; which write in Q:

6 4 4
8&_’_8;‘5”_ 2c0,, + rc—ao-” +_80',3

n =—fi3 (60)
or  ds ! s Ox, '
6
ag—:” + aa "y co, — O, + 1ty =—f, (61)
with the boundary conditions for r=*1
o =g (62)
O =81 - 63)

Let us integrate equations (60) and (61) upon the thickness. Using the boundary
conditions (62) and (63), we obtain the system:

1 (90, 5 80‘4 L 1 L
L ( asrr —2co;, +r astt + ax; dr = _.[_1f’ dr— [gr+ -g I; (64)
[ [ao—;+ coy - mZn+rc20;t}dr=—I‘ fodr=1gy-g,1. (65)
-1l Js -1

Let us now use equations of problem F; . First multiplying equations (55) and (56) with

rc, we obtain:

4
Il rcao_t5"+rcao-” 80't3 dr=0; I 2y pe? O'” dr=0.
-1 or ds

An integration by parts of the previous equations leads to:

4 3
Il —CO‘; +rc%+rc% dr=0; (66)
-1 s ox;
J._ll(—coin + rczoft) dr=0. 67)
Then replacing (66) and (67) in (64) and (65) respectively, we get:
100 oo, do 1 _
L(—as” ~coy, - ’C_axf +—ax;3 dr==[ fdr-1g/ —g1: (68)
oo,
j_l o —M 4 co) |dr= j f,dr—lg —g.1. (69)
Now we shall multiply (68) with g(s) and (69) with [(s) . We obtain:
1 90, EYop Bl
[ a5 geas, —qre S +q S22 \dr=—' of, dr—qlg; - g1 (70)
17 os 0x;3 8x3

136



I_l( a;, 4l OﬁJdr-—ﬁlf,, dr—1[g} — ;1. 7y

Using the following equalities:

80'5 3 a(qoj) 99 s 180'5

m _

alo,) dl s

O-tt’ - ~ (o
as s os os ds os
equations (70) and (71) reduce to
! _a(qoj) Bq doy; 90y __! .
I_l( asﬂ —g 65 CITC ax; +q ax; d}’— —I_qur dr—q[gt —gr ] ;

o(lo; ol 1 L
J‘—l[ (aS ) aso_tsn +lco—?t\]dr=_j_llfn dr_h[gn _gn] .

Now let us integrate the previous equations with respect to s after subtraction. We
obtain

3 4

J I a(qO',,) —al—— % +cl|o) + ﬂ—cq o) —rcq%+q% drds=M, (72)
s Os Os 0x3 X5

where M, , whose expression is given in result 3, denotes the twist torque calculated at point

C . To simplify the previous equations, we use on one hand the geometrical properties

% +c¢l=0 and %—cq =1, and on the other hand the boundary conditions &, =0 and
s N

0, =0 on s=s_and s=s,.Then equation (72) reduces to

o 4
- rcq i3 + q—ao.f3 drds=M
0x,

ox;
Now we multiply equation (55) by r and integrate it upon a section. We get:

4 ) 33
I J. ’”+ ”+ra’ drds=0.

os X5

Using the boundary condition 0',, =0 on s=s_ and s=s,, an integration by part of
the first term leads to:

[ [ o3 drds = [ j_llraa;:? drds. (73)

On the other hand, we shall multiply equation (57) with the sectorial area @ and
integrate the result upon a section. We get:

) 4 .
j_+ j_ll(wag':% N wag,a 00 J drds = — j_+ j_‘la;]g drds . (74)

Using the property

005 _Owoy) do ,; _dwo))

Os Os ds "7 0s 1013
and the boundary condition (54), we obtain

I T [a(wo-r3)+ Gt3+waa§3]drd ‘I wa3drds‘j+w[g3 g 1ds.
3

. .. 1 .
With the boundary condition J._IO':gdr:O on s=s_ and s=s,, the last equation

reduces to:

3
RN (q%maa

X3

]drd —j jwf3drds—j+w[g3 g3lds.
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Now let us derive the last equation with respect to x;. We obtain the relation:

, 4 } 2.3
J.AJ’F q—ao.f3 drds = —I +J.l a)a 933 drds — M ) (75)
s_ =1 Qg S dx

where the expression of M, is given in result 3. To finish let us replace o,
their expressions (73) and (75) in equation (72). We get:

, 3
J.;:’I_ll((l—cq)r—aao-’3 - 880'3 Jd ds=M, +dM3

X3 X5 X3

and o with

Finally, replacing 0'?3 and 0';3 with their expressions (58) — (59), we obtain the twist
equilibrium equation of result 3.

5.4. Bending equations. Result 4: For force levels such as F,=F, =&, G, =G, =

and Fy; =G, =€, the leading terms of the displacements wy, ®°, uf and w are solutions
of the following bending equations:

3 4—c 4—c 450 250
_Sld _Ejlldbil _Ellzdbi;2 _E‘Ilwd®4 +11dd62 =_P1_dM3l;
U od;  u de; U de; U dxy dx; dx;
3 4—c 4—c 450 250
ESzd M33 _£J12d Lﬁﬁ _Efzzd L? _Efzwd (2 + de G; =_P2_—dM32’
M dey M dx; U dey U dxy dx; dxy

S = J':+J'_11x1 drds; S, = I:+J'_llx2 drds ; J,, = I:+J‘_llxlz drds:
I = .[:Jr.[_zx% drds; Jy, = _[:Jr_[_llxlxz drds; J,, = .[S:Y+I_11xlwdrds;

Jop = I:+J'_11x2a)drds; Jiy = J':+I_112r2ccosadrds; Joy = I:J’J._lerzcsinadrds
and

= J.SJ’I_IICOS af, drds + J.:J’ cosalg, — g 1ds— I:*J._llsin af, drds - J.:J’ sinad g, — g, 1ds;
=" [ sinay, drds+ [*sinatg) ~ g 1ds+ I:_*J‘ilcos af, drds+ [ *cosalg) — g, 1ds:
My = J-::’I_llxlf3 drds + I::'xl[g; —gslds; My, = J‘::’ﬁlxzﬁ drds + I::’xz[g;’ —g5lds.
Proof: Let us start again from equations (68) — (69). We have:

5 3 4
J'_ll(ao?t _CO_S —rCaO_B +%\] dr=_j_11ft dr—[g;— _gt_] : (76)

os " 0x;3 0x;3

ds

We shall multiply them respectively with cosa and sina . Then an integration upon a
section leads to:

o [cos

j_l(aof" +c0'ﬁ]dr——_[ fodr—lgi—g,1. (77)

teleg
—recoso

3 4
telej
913 4 cos @228 | drds = —j p,cosads ;
X5 8x3

S

5
s, (1| . do ) s .
[ | sine—= +esinao,) |drds=—[*p, sinads,
s_ -1 ) u s_on
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with p,=[ fidr+lg/—¢/1 and p,=[ f,dr+lg}—g;]. Using the following

properties:
do,  d(cosao, . .90, _ d(sinao,
cosag—L = ( ”)+cs1n050‘t5,; sing—2 = ( ’")—ccosaatsn,
Os s s Os
we get:
. 1 [ 9(cosao . oo, EYop
JW’I dlcosaoy) csinao, — ccosao,, — recos d—=-2 + cos a—=2 | drds =
s_-1 ds X5 0x5
: s, (1 [ d(sinao, . Sp
= —r+p, cosa ds IY+J‘ [M— ccosao,, + csma’O‘ftJ drds = —I *p,sinads .
s_ s_ -1 oJs s_
By substraction, we obtain finally:
3 4
s, ¢l 90, do,
IYJ“J‘ —rccos@—" + cosa—L drds = —P, . (78)
s_ -1 0x3 0x5

On the other hand, let us multiply equation (57) with x; and integrate the result upon a

oo o
n3 + X 13

3
section. We get I:* J‘_ll[x1 + X 880;3 J drds = —I:+ J‘_llxl Sfr drds .

or Os 3
ooy, 0 4
Then using the equality xl% = % —cos 0{0'?3 , the boundary condition (54) and
s s
o, =0 for s=s, , we obtain:
syl 4 0 O'§3 syl s, + _
L I—1 —COSO0 5+ X; . drds = —J.‘Y I_1x1f3 drds — J.‘Y xlgz —g31ds . (79)
_ A _ _
Now let us derive equation (79) with respect to x;. We get
; doyy oy M
[ [ ~cosa =28 4 5 TT5 | drds = _dMs, (80)
s_d-1 0x5 0x; X5
Adding equations (78) and (80), we have
; do, 0 M
I +J.l —recosa 223 +x1$ drds =—P, —u.
s_J-1 ax3 ax3 d)C3

Finally, replacing 0',33 and 0'§3 by their respective expressions, we obtain the bending
equation in the direction e, of result 4. The bending equation in the direction e, is obtained

in the same way, by permutation of the indices.
6. Comparison with Vlassov model.
To compare the one-dimensional thin-walled beam model obtained at results 1 to 4 to

Vlassov model, we shall first go back to the initial dimensional domain Q" and to the
u;, f* and g*.To do this, let us define

Eq
O=u u®=hu’

n nr-n n’

dimensional variables u, , u,,
*) 0_ 7.0, 0 _ 0 _ 0
u, =u,u, =hu; u Uy =uzu, =Ehuy . (81)

We then have the following result:
Result 5: For force levels such as F,=F, = £, G =G, = £ and F,=G;= £, the

displacement (u;ko,uzo,ugo) is of Vlassov type:
i, = i, cos(@) + 15 sin(@)—q (s)0; i, = —ig, “sin(@) + 15 cos(a)+1 (5)0;
o _ v sdmC wdiy’ . d@”
M;O = u;—x; L —x; 2 o —. (82)
X5 dx, dx,
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Starting from result 1 and from the dimensional analysis on the geometric parameters
performed, the proof of this result does not constitute any difficulty and is left to the reader.

We just need to set u, = hitf i, = hits ,ut; = ehity ,@ =d*@,0° =e0" and to use the

relations h/L=¢&* and hL = d* between the small parameters.

In the same way, we shall go back to dimensional variables in traction, twist and
bending equations of results 2 to 4. However, we will not give here the complete
dimensional equations, but only the reduced ones which are sufficient for a comparison with
Vlassov model. We recall that the one-dimensional equations reduce to a much more simple
form if they are written in a particular base, called "reduced basis". In this reduced basis, the
directions e, and e, correspond to the principal inertial axis of the profile. Moreover the
origin of the frame coincides with the center of gravity of the profile and the origin of the
sectorial area with the shear center. We then have the following result whose proof does not
constitute any difficulty and is left to the reader:

Result 6: For force levels such as F,=F, = £, G =G, = £ and F,=G;= £, the

—k,

leading terms of the displacements ﬁ; , 07, u,° and ﬁ;e are solution of the following

reduced one-dimensional equilibrium equations:

_*0
*dzl/l:; %
dxy? }
4770 2 =*0 *
EJ. *%—ﬂfk* %=M:+dM3 ; (84)
0w dx3 wd dx3 dx3
— —*( *
« dm . d’® dM
EJ| |\ ———uJ —=P +—3L; (85)
11 = HJ g e 1 d,
—*c —*() *
o d'uy . d’® . aM
EJyy———J — =P, +—32 . (86)
2 dx)’ HI 2q d? 2 d,

The dimensional expressions of the forces and of the geometric constants involved in
result 6 may be obtained easily fom results 2 to 4. We shall quote that the kinematics, the
one-dimensional reduced traction and twist equilibrium equations of results 5 and 6
correspond exactly to Vlassov ones [47]. However the one-dimensional bending equations
(85) — (86) differ from Vlassov ones which write (in the reduced basis):

% d4M1 % dM;l X

EJ I = P + PR (87)
! ey’ : dx;
4_*C *
Bt g M (88)
dx; dx,

Therefore, at the difference from Vlassov model, the bending equations (85) — (86) contain a
supplementary term coupling twist and bending effects. This coupling term is linked to the new

geometrical constants J : 4 and J ; 4 and does not seem to have any equivalent in the literature. It

corresponds most probably to a correction at the second order of Vlassov model. Thus the model
obtained by asymptotic expansion in this paper should improve Vlassov one where the twist
angle and the bending displacements are uncoupled. (We recall that from Vlassov model, an
external bending loading whose resultant induces a torque, will induce not only a bending dis-
placement but also a twist. In contrary, a torque will induce only a twist, but no bending, unlike
the model obtained in this paper where these two effects are coupled).

Let us quote that such a limitation of Vlassov theory (lack of coupling) already have been
noticed by other authors [5, 6, 23, 43]. To improve Vlassov model, the authors proposed to
add directly supplementary terms characterizing coupling effects in equilibrium equations.
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7. Conclusion.

In this paper we deduced by asymptotic expansion a one-dimensional linear model for
thin-walled rods obtained for a strongly curved profile subjected to low force levels. The
obtained kinematics, the one-dimensional traction and twist equilibrium equations of results
1 to 3 correspond exactly to Vlassov ones [47]. However, whereas Vlassov approach relies
on a priori physical assumptions, with our approach the kinematics and equilibrium
equations are directly deduced from the three-dimensional equilibrium equations for the
level of applied forces considered. Thus the domain of validity of the obtained model can be
specified precisely thanks to the dimensionless numbers introduced.

Another major result is that that this asymptotic approach leads to an explicit analytical
expression of the geometrical constants involved in the one-dimensional equilibrium

equations. In particular, we obtain a general analytical expression of the twist rigidity J ;d ,

whereas in the literature only an approximate expression depending on an empiric
coefficient is given [47].

Finally, it is important to notice that the one-dimensional bending equations of result 4
differ from Vlassov ones. At the difference from Vlassov model, we obtain a supplementary
term coupling twist and bending effects. This coupling is due to the new geometrical

constants J,, and J,, and does not seem to have any equivalent in the literature.

PE3IOME. 3anponoHoBaHO OTPHMaHY aCHMITOTHYHHM METOIOM OJHOBHMIpPHY MOJENb I TOH-
KOCTIHHOTO CTEPXHS 3 BIJKPHTHM CHJIBHO CKPUBJICHHUM IIONEPEYHUM IIEpepi3oM, sika BPaxXOBYE B3a€EMO-
3B 30K MiX CKPy4yBaHHSM Ta 3THHOM. 3a JOMOMOIOK aHali3y PO3MIpHOCTEW B JIIHIHHUX TPHUBHMIPHHX
PIBHSIHHSX PIBHOBAaru 3HaiiicHO 0€3p03MipHi BENUYMHH, SIKI XapaKTePHU3yIOTh T€OMETPII0 CTEPKHS Ta PIBEHb
NPUKIaAeHUX cHiI. [ 3a1aHOro piBHSA CHJI METOJOM aCHMIITOTHYHOTO PO3KJIALy OTPUMaHi MOPSAIOK 3Mi-
IICHb T4 BIAINOBIJHA OJHOBUMipHA MOJAENb. Y BHNAJKy HU3BKOTO PIiBHS CHJI OTPHMAHO OJHOBHUMIPHY MO-
Jieb, KIHEeMaTHYHI PiBHSHHS, PIBHSHHS KPYYEHHsS Ta 3TMHY BiANOBial0Th Mozeni BnacoBa. OnHak 1s Mo-
JieSib BPaXOBY€ B PIBHSHHSX 3rMHY B3a€EMOJIIF0 MDXK 3THHOM 1 Kpy4YeHHSIM Ha BiaMiHy Bia Mozeini Bnacosa,
sIKa TaKy B3a€EMOJIiI0 HE BPaXOBYE.
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