С.Д.Гарцман, А.А.Жуков, И.И.Карпухин

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ПРОЦЕССА ПОПЕРЕЧНОГО УДАРА ШАРА ПО УПРУГОЙ БАЛКЕ В ЗАДАЧЕ С.П. ТИМОШЕНКО

3AO "Прочность", Рязанский проспект, 8a, 109428, Москва, Российская Федерация, e-mail: zao_prochnost@mtu-net.ru

Abstract. The describing a process of collision of a ball and a beam S.P.Timoshenko integral equation is changed by the system of nonlinear differential equations, which are reduced to the dimensionless form. An effect of parameters of the system "ball – beam" on the number of collisions and maximal dimensionless values of the impact force, beam deflection and time of collision process is revealed.

Key words: elastic beam, ball, collision, system of nonlinear differential equations, impact force, beam deflection, time of collision, number of collisions.

Введение.

Соударение груза с упругой системой издавна привлекало внимание ученых. Впервые решение задачи о поперечном ударе груза по упругой балке было предложено Сен-Венаном. Предполагалось, что удар производится сосредоточенным грузом, который не отрывается от балки в промежутке времени, когда прогиб балки достигает максимума. При этом местные деформации, возникающие в зоне контакта груза и балки, не учитывались. В дальнейшем было установлено, что решение Сен-Венана не позволяет вычислить динамические напряжения в сечениях балки, поскольку ряды для определения поперечных сил расходятся. Существенные коррективы внес предложенный С.П.Тимошенко подход, при котором были учтены как общие, так и местные деформации. При этом связь между силой удара и прогибом середины балки была получена путем разложения решения по собственным формам колебаний балки. Кроме того, была показана возможность не учитывать при изучении процесса соударения влияние сдвиговых деформаций и инерции поворотов элементов балки. Учет этих факторов привел бы к неоправданному усложнению решения задачи.

Несмотря на некоторые вычислительные сложности, к задаче С.П.Тимошенко и в дальнейшем возвращались многие исследователи. Были проведены теоретические и экспериментальные работы, подтвердившие ряд результатов, полученных С.П. Тимошенко. В частности, была подтверждена возможность возникновения многократных соударений балки и груза. В связи с этим возникла потребность определить основные факторы, влияющие на число соударений. При этом не вызывала сомнения целесообразность развития метода С.П.Тимошенко и перехода от отдельных примеров к обобщениям полученных результатов.

В данной статье сделана попытка такого обобщения. При этом для анализа закономерностей процесса соударения представляется удобным перейти от интегрального уравнения С.П.Тимошенко к системе нелинейных дифференциальных уравнений в безразмерном виде, что позволит использовать стандартные вычислительные алгоритмы.

§1. Постановка задачи.

Решение задачи о поперечном ударе шара по упругой балке, предложенное С.П. Тимошенко [5], явилось крупным вкладом в теорию механического удара. Для определения закона изменения во времени t силы P, возникающей при ударе в горизонтальном направлении шара, имеющего массу M, посередине двухопорной шарнирной балки, С.П. Тимошенко предложено следующее интегральное уравнение [4, 5]:

$$V_0 t - 1/M \int_0^t dt_1 \int_0^{t_1} P dt = \left(P/K \right)^{2/3} + 2/m \sum_{i=1,3,5,\dots}^{\infty} 1/k_i \int_0^t P \sin k_i (t - t_1) dt , \qquad (1.1)$$

где V_0 — поступательная скорость шара в момент начала контакта с балкой; K — коэффициент, характеризующий зависимость местных деформаций в зоне контакта балки и шара от силы взаимодействия; m — масса балки; k_i — i -я собственная частота изгибных колебаний; i =1, 3, 5... — номер гармоники; t_1 — время приложения единичного импульса.

Коэффициент K зависит от коэффициентов Пуассона μ_w , μ_u , от модулей упругости E_w , E_u материалов балки и шара, а также от радиусов кривизны R_w , R_u контактирующих поверхностей, соответственно, балки и шара.

При $\mu_w = \mu_u = \mu$, $E_w = E_u = E$, $R_w = \infty$ и $R_u = R$ коэффициент K можно определить по формуле

$$K = \frac{2}{3}E(1-\mu^2)^{-1}R^{0.5}$$
.

Выражение для определения частоты k_i имеет следующий вид: $k_i = i^2 (2c/m)^{0.5}$, где $c = \pi^4 EJ/(2L^3)$ — изгибная жесткость балки; J — момент инерции ее поперечного сечения; L — длина балки.

Уравнение (1.1) описывает процесс удара при условии, что $P \ge 0$ и $0 \le t \le T$, где T — время действия первого ударного импульса. Начиная с момента времени t = T следует принять, что P = 0, и рассматривать раздельное движение балки и шара.

В дальнейшем при t>T возможно формирование новых ударных импульсов. Для описания процесса повторных соударений необходима корректировка уравнения (1.1). Кроме того, как следует из уравнения (1.1), даже при одинаковых характеристиках материалов балки и шара и $R_w=\infty$ процесс соударения определяется, по меньшей мере, восемью параметрами: V_0, M, m, μ, E, J, L и R_u . Это значительно затрудняет анализ процесса соударения.

Ставится задача преобразовать уравнение (1.1), приведя его к виду, удобному для анализа как первого, так и последующих соударений балки и шара. На основе преобразования уравнения (1.1) исследовать влияние параметров системы «шар – балка» на число соударений и определить максимальные значения силы удара, прогиба балки и времени процесса соударения.

§2. Преобразование уравнения удара С.П. Тимошенко.

С учетом [1] заменим интегральное уравнение (1.1) тождественной ему системой нелинейных дифференциальных уравнений

$$P = K(U - W)^{1,5}$$
 при $U - W \ge 0$; $P = 0$ при $U - W < 0$;

$$\ddot{U} = -P/M \; ; \; W = \sum_{i=1,3,5...}^{\infty} W_i \; ; \; \dot{W} = \sum_{i=1,3,5...}^{\infty} \dot{W}_i \; ;$$
 (2.1)

$$\ddot{W_i} = 2P/m - k_i^2 W_i,$$

где U — перемещение шара; W — прогиб балки; W_i — составляющая прогиба балки W по i -й форме колебаний.

Начальными условиями для системы уравнений (2.1) при t = 0 являются

$$\dot{U}(0) = V_0$$
; $U(0) = 0$; $\dot{W}_i(0) = 0$, $W_i(0) = 0$, $i = 1, 3, 5...$

В отличие от уравнения (1.1) система уравнений (2.1) описывает процесс удара как при $t \le T$, так и при t > T .

Для удобства последующего анализа систему уравнений (2.1) и начальные условия для нее представим в безразмерной форме, введя следующие безразмерные параметры: безразмерное перемещение u шара; безразмерный прогиб w балки и его составляющие w_i ; безразмерную скорость \dot{u} шара; безразмерную скорость \dot{w} изменения прогиба балки и ее составляющие \dot{w}_i ; безразмерное усилие p; безразмерное время τ .

Безразмерные параметры связаны с размерными параметрами зависимостями

$$\begin{split} w &= W \, / \, W_n \; ; \quad w_i &= W_i \, / \, W_n \; ; \quad u &= U \, / \, U_n \; ; \quad \dot{w} = \dot{W} \, / \, \tilde{W}_n \; ; \quad \dot{w}_i = \dot{W}_i \, / \, \tilde{W}_n \; ; \\ \dot{u} &= \dot{U} \, / \, \tilde{U}_n \; ; \quad p &= P \, / \, P_n \; ; \quad \tau = t \, / \, T_n \; , \end{split}$$

где W_n, U_n — нормирующие перемещения; $\tilde{W_n}, \tilde{U_n}$ — нормирующие скорости, соответственно, балки и шара; P_n — нормирующая сила; T_n — нормирующее время.

С учетом [2, с.203] и [3, с.498] примем, что

$$W_n = U_n = V_0 / k_1$$
; $\tilde{W}_n = \tilde{U}_n = V_0$; $P_n = MV_0 / k_1$; $T_n = 1 / k_1$.

Подставив принятые безразмерные параметры в систему уравнений (2.1), получим следующую систему нелинейных дифференциальных уравнений:

$$p = V_{kr}(u - w)^{1,5} \quad \text{при } u - w \ge 0; \quad p = 0 \quad \text{при } u - w < 0;$$
$$\ddot{u} = -p; \quad w = \sum_{i=1,3,5...}^{\infty} w_i; \quad \dot{w} = \sum_{i=1,3,5...}^{\infty} \dot{w}_i; \qquad (2.2)$$

$$(\ddot{w}_i = 2M_{kr}p - i^4w_i; V_{kr} = V_0^{0.5}k_1^{-2.5}M^{-1}K; M_{kr} = M/m)$$

Начальные условия при $\tau = 0$ для решения системы уравнений (2.2) имеют вид

$$\dot{u}(0) = 1; \ u(0) = 0; \ \dot{w}_i(0) = w_i(0) = 0, \ i = 1, 3, 5...$$
 (2.3)

Таким образом, в задаче Тимошенко процесс соударения шара с упругой балкой определяется двумя безразмерными параметрами: M_{kr} и V_{kr} .

Параметр V_{kr} можно также представить следующим образом: $V_{kr}=1,25\times (V_0/V_{ycn})^{2,5}$, где $V_{ycn}=\alpha_{\max}/t_n$ – условная средняя скорость перемещения массы M на расстояние α_{\max} за время t_n ; $\alpha_{\max}=1,25^{0,4}V_0^{0,8}M^{0,4}K^{-0,4}$ – наибольшее перемещение массы M при соударении с неподвижной преградой [4].

Представляет интерес сравнение полученных результатов с результатами, приведенными в работах [4, 5] и [2, с. 200 – 204]. Основным отличием рассмотренного выше подхода от известных является переход от интегрального уравнения (1.1) (или (6.5) в работе [2]) к записанной в безразмерном виде системе нелинейных дифференциальных уравнений (2.2) с начальными условиями (2.3). Это позволяет для решения задачи использовать стандартные алгоритмы, например, метод Рунге – Кутта [3].

В отличие от уравнения (1.1) решение системы уравнений (2.2) позволяет определить параметры процесса соударения как при $(u-w) \ge 0$, так и при (u-w) < 0. Следо-

вательно, может быть рассмотрен процесс повторных соударений и исследовано влияние величин M_{kr} и V_{kr} на максимальные значения p_{\max} , τ_{\max} и w_{\max} , соответственно, безразмерных силы удара, времени процесса соударения и прогиба балки.

§3. Числовые примеры.

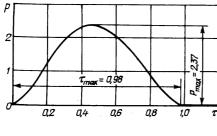
Разработанная в ЗАО «Прочность» (ОАО АХК ВНИИМЕТМАШ) математическая модель процесса соударения балки и шара, описываемая системой уравнений (2.2) с начальными условиями (2.3), реализована в виде программы для ЭВМ. Удовлетворительная точность была достигнута при удержании шести гармоник (i=1,3,5,...,11). Первоначально провели сравнение результатов расчета с двумя примерами С.П. Тимошенко, приведенными в [5, с. 400] для балки прямоугольного сечения с высотой h и шириной b.

Для первого примера при L =15,35 см, b =1 см, h =1 см, R_u =1 см, V_0 =1 см/с, $E_u = E_w$ =2,2·10¹¹ H/м², $\mu_u = \mu_w$ =0,3 получили, что K =1,53·10¹⁰ H/м¹,5, T_n =1,59·10⁻⁴ с, P_n =2,10H, V_{kr} =15,08, M_{kr} = 0,273.

На рис. 1 приведен график $p(\tau)$, из которого следует, что значение безразмерного времени au_{\max} процесса удара составляет 0,98, а максимальное значение безразмерной силы удара $p_{\max} = 2,37$.

Значения размерных параметров: $t_{\text{max}} = 0.98 \cdot 1.59 \cdot 10^{-4} = 1.56 \cdot 10^{-4} \text{c}$; $P_{\text{max}} = 2.37 \cdot 2.10 = 4.98 \text{ H}$.

Для второго примера при L =30,7 см, b =1 см, h =1 см, R_u =2 см, V_0 =1 см/с, $E_u = E_w$ =2,2·10¹¹ H/м², $\mu_u = \mu_w$ =0,3, K =2,24·10¹⁰ H/м¹,5 величины нормирующих коэффициентов, а также V_{kr} и M_{kr} , составили: T_n =6,35·10⁻⁴ с, P_n =4,20 H, V_{kr} =85,28, M_{kr} =1,09.



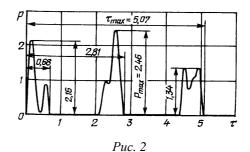


График $p(\tau)$ приведен на рис. 2. Из анализа полученных результатов следует, что в рассматриваемом примере реализуются три соударения. При этом $\tau_{\rm max}=5,07$, а $p_{\rm max}=2,46$. Отсюда $t_{\rm max}=5,07\cdot6,35\cdot10^{-4}=3,22\cdot10^{-3}{\rm c}$; $P_{\rm max}=2,46\cdot4,20=10,3$ Н. Следует отметить, что максимального значения сила удара достигает при формировании второго импульса.

§4. Определение и анализ параметров процесса удара.

Приведенные выше методы расчета позволяют выявить связь между параметрами M_{kr} , V_{kr} и числом соударений балки и шара, а также значениями максимальной безразмерной силы удара p_{\max} , максимального безразмерного времени удара τ_{\max} и максимального безразмерного прогиба балки w_{\max} . Для этого варьировали параметрами M_{kr} и V_{kr} в областях $0.1 \le M_{kr} \le 10$ и $1 \le V_{kr} \le 1000$, что существенно перекрывает диапазон изменения этих величин в примерах С.П. Тимошенко.

В табл. 1 приведено число соударений балки и шара в функции от M_{kr} и V_{kr} . По результатам расчетов видно, что повторные соударения появляются при $M_{kr}>0.1$ и $V_{kr}>300$. По мере увеличения M_{kr} и V_{kr} увеличивается число соударений. При этом во многих случаях максимум силы удара возникает не при первом, а при одном из последующих соударений, аналогично примеру, приведенному на рис. 2.

Таблица 1

M_{kr}	V_{kr}									
	1	3	5	20	100	300	500	1000		
0,1	1	1	1	1	1	1	1	1		
0,2	1	1	1	1	1	1	1	1		
0,3	1	2	2	2	2	2	2	3		
0,4	1	2	2	2	2	2	3	4		
0,5	1	2	2	2	2	3	4	6		
0,6	1	2	2	2	2	4	4	6		
0,7	1	2	2	2	2	4	4	4		

Таблица 2

M_{kr}	V_{kr}									
	1	3	5	20	100	300	500	1000		
0,1	1,03	1,59	1,94	3,24	5,87	8,72	10,46	13,35		
0,2	0,94	1,45	1,75	2,84	4,97	7,19	8,52	10,68		
0,5	0,76	1,15	1,37	2,18	4,67	6,77	5,61	8,99		
1,0	0,80	1,23	1,49	2,46	2,68	5,10	5,14	8,51		
3,0	0,62	0,84	0,84	1,24	1,78	3,32	4,23	5,24		
5,0	0,54	0,68	0,77	1,17	2,20	2,67	2,95	3,79		
10,0	0,40	0,49	0,56	0,97	1,31	1,79	2,52	2,66		

Таблица 3

M_{kr}	V_{kr}									
	1	3	5	20	100	300	500	1000		
0,1	3,21	1,99	1,61	0,94	0,49	0,31	0,26	0,19		
0,2	3,00	1,92	1,54	0,91	0,48	0,30	,25	0,18		
0,5	5,91	4,88	4,55	3,90	2,84	2,63	4,66	3,42		
1,0	5,45	4,26	3,90	3,24	2,81	3,02	3,00	2,87		
3,0	8,96	7,40	7,02	7,63	8,11	8,60	7,51	8,69		
5,0	9,97	10,41	9,78	10,64	9,28	9,48	10,47	9,42		
10,0	13,65	15,63	14,32	14,45	13,40	14,82	14,34	13,49		

Таблица 4

M_{kr}	V_{kr}								
	1	3	5	20	100	300	500	1000	
0,1	0,29	0,32	0,32	0,34	0,33	0,32	0,33	0,31	
0,2	0,52	0,55	0,56	0,57	0,54	0,51	0,49	0,47	
0,5	0,99	1,00	1,00	1,00	0,85	0,83	0,89	0,93	
1,0	1,38	1,34	1,35	1,31	1,27	1,28	1,28	1,24	
3,0	2,45	2,43	2,41	2,33	2,36	2,33	2,27	2,28	
5,0	3,14	3,17	3,17	3,10	3,08	2,97	3,00	3,03	
10,0	4,46	4,43	4,42	4,44	4,35	4,42	4,42	4,40	

В табл. 2 приведены значения абсолютного максимума p_{\max} в функции от M_{kr} и V_{kr} . Как следует из табл. 2 увеличение M_{kr} приводит к уменьшению p_{\max} , а увеличение V_{kr} – к росту p_{\max} .

Аналогично построены табл. 3 для значений безразмерного времени au_{\max} и табл. 4 — для максимальных значений безразмерного прогиба балки w_{\max} .

Из табл. 3 следует, что увеличение M_{kr} приводит к росту τ_{\max} , а увеличение V_{kr} при $M_{kr} \leq 1$ – к снижению τ_{\max} . При $M_{kr} > 1$ значение τ_{\max} несущественно зависят от величины V_{kr} .

Данные в табл. 4 показывают, что значение w_{\max} , в основном, определяется величиной M_{kr} и несущественно зависит от величины V_{kr} .

Аналогичный анализ может быть проведен для любого сочетания параметров M_{kr} и V_{kr} . В частности, установлено, что при $0.02 \le M_{kr} \le 1$ и $V_{kr} < 1$ выявленные закономерности влияния M_{kr} и V_{kr} на значения p_{\max} , τ_{\max} и w_{\max} сохраняются.

Заключение

Преобразовано уравнение С.П.Тимошенко, описывающее процесс соударения шара и двухопорной шарнирно закрепленной балки. Исследовано влияние параметров системы "шар — балка" на число соударений и максимальные значения силы удара, прогиба балки и времени процесса соударения. Для этого предложенное С.П.Тимошенко интегральное уравнение заменено системой нелинейных дифференциальных уравнений. Такое преобразование позволило для определения параметров процесса использовать стандартные алгоритмы, в частности, метод Рунге — Кутта.

Показано, что в задаче С.П.Тимошенко процесс соударения шара с балкой полностью характеризуется двумя безразмерными параметрами M_{kr} и V_{kr} . Установлено, что повторные соударения реализуются при $M_{kr}>0.1$ и $V_{kr}>300$ (табл.1). Также проведен анализ влияния указанных безразмерных параметров на величины максимальной безразмерной силы удара (табл.2), максимального безразмерного времени процесса соударения (табл. 3) и максимального прогиба балки (табл.4). Выполненные расчеты показали, что величина максимального безразмерного прогиба балки в основном определяется величиной M_{kr} .

Предложенный в статье подход, предусматривающий использование системы обыкновенных нелинейных дифференциальных уравнений вместо интегрального уравнения позволяет преодолеть вычислительные сложности и в дальнейшем перейти к усложнению решаемых задач, в частности, скорректировать зависимость местных деформаций от силы удара. В результате появляется возможность расширить круг рассматриваемых задач соударения твердого тела и упругой системы.

Р Е З Ю М Е . Інтегральне рівняння С.П. Тимошенко, що описує процес зіткнення балки і кулі, замінено системою нелінійних диференціальних рівнянь, приведених до безрозмірного вигляду. Виявлено вплив параметрів системи «куля — балка» на число зіткнень і максимальні значення безрозмірних сили удару, прогину балки і часу процесу зіткнення.

- 1. *Гариман С.Д., Шулемович А.М.* Повторные соударения в теории удара С.П. Тимошенко // Проблемы машиностроения и надежности машин. 2001. № 5. С. 31 34.
- 2. Зегжда С.А. Соударение упругих тел. Санкт-Петербург: Изд-во С.-Петербург. ун-та, 1997. 316 с.
- 3. *Корн Г., Корн Т.* Справочник по математике для научных работников и инженеров. М.: Наука, 1970.-720 с.
- 4. Пановко Я.Г. Введение в теорию механического удара. М.: Наука, 1977. 224 с.
- 5. Тимошенко С.П. Колебания в инженерном деле. М.: Наука, 1967. 444 с.