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The flow cipher algorithm based on walks at the flag variety of a Schubert system over the finite
commutative Ting is proposed. The restriction of the incidence relation of the geometry of a
finite simple Lie group of the normal type on the union of large Schubert cells of the mazimal
dimension is an example of the Schubert system. More general examples are connected with
Kac—Moody groups. We introduce some applications of such ciphers based on periodic walks for
the construction of multivariate private keys, security of which is connected with the discrete
logarithm problem for cyclic subgroups of polynomial transformations of increasing order.

Schubert systems, definitions, and examples. All graphs we consider are simple, i.e. undi-
rected without loops and multiple edges. Let V(G) and E(G) denote the set of vertices and the
set of edges of G, respectively. Then |V (G)]| is called the order of G, and |E(G)| is called the size
of G. A path in G is called simple if all its vertices are distinct. When it is convenient, we shall
identify G with the corresponding antireflexive binary relation on V(G), i.e. E(G) is a subset of
V(G) x V(G), and write v G u for the adjacent vertices u and v (or neighbors).

The girth of a graph G, denoted by g = g(G), is the length of the shortest cycle in G.

We use a term incidence structure for a triple consisting of the set I') its partition I' =
=TI UU---UTs, and a symmetric antireflexive binary relation I (incidence) on the set I’
such that zIy implies € I';, y € I';, and @ # j.

We refer to the number n as the rank of an incidence structure. In the case n = 2, the triple
is called an incidence structure, and P = I'y and L = I'y are called the set of points and the
set of lines, respectively.

Let K be a finite commutative ring. Linguistic is called the incidence structure with the point

set I'1 = K and the line set I'y = K" ™ such that point (x) = (21, 22,...,Ts, Tsi1,.- -, Tsim)
is incident to the line [y] = [y1,92, -+, Yr, Yr+1s Yrt2, - - - s Ymtr) if and only if the relations

1 Tst1 + 01yr+1 = [1(T1, 22,0, T, Y1, Y20 -5 Yr)s

asTsi2 + bayria = fa(T1, T2, Ts41, Y1, Y2, - -+, Yrt1),

amTs+m + bmYrim = fUTL T2,y Tspm—1,Y1,Y2, -+« Yrtm—1)
hold, where a; and b;, j = 1,2,...,m, are not zero divisors, and f; are multivariate polynomials

with coefficients from K. Brackets and parentheses allow us to distinguish point from line (see [2]).
The color 7(p) (r([l])) of point (p) (line [I]) is defined as the projection of an element p from the
free module on its initial s (respectively, r) coordinates. As follows from the definition of linguistic
incidence structure, there exists the unique neighbor with a chosen color for each vertex of the
incidence graph.
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Recall that a flag F' of the incidence system I' = T'y T2 |J - - - ', is the clique of a simple
graph I. This means that x, y € F implies x/y.

Let Q = {1,2,...,t} be a finite set. For each subset M in Q and each commutative ring K,
we consider the totality K™ = {f: M — K} of partial functions from 2 into K with support
supp(f) = M. It is convenient for us to write element f € K M a5 a pair (M, f). Let My and My
be nonempty sets of 2. We denote, by L(Mj, Ms, K), the linguistic graph with a point set KM
and a line set K2 such that the incidence of the point (M, f1) and the line (Ms, f2) will be
given by the following conditions:

mif1(si) + lifa(si)) = Fi(f1(r1), fi(r2), .-, fi(ray)s f2(p1)s fa(p2)s - - -, fa(pay)s f1(51),
fl(SQ), e ,fl(si_l), fg(sl), fz(Sg), . ,fg(si_l)), 7= 1, 2, e ,t.

Here, elements of My — M, (M2 and My — M () Mz are defined by lists {ri,72,...,74,}
and {p1,p2,...,Pd, }, and elements of M; () My are listed as s1, s2,...,s;. The color r(v) of the
vertex v = (M;, fi), © = 1,2, in the graph L(Mj, Ms, K) is defined as the restriction of f; onto
M; — M () Ms. A linguistic incidence system L(M;,Q, K), t € J, is defined for the family of
subsets My, t € Q, of Q and the commutative ring K as a disjoint union of K¢ t € J, together
with the incidence relation I such that its restriction I;; on K M; U KM, where i,j € J are
defined by a linguistic graph L(M;, My, K). We call the Schubert system a linguistic incidence
structure L(M,Q, K), t € J, with a nonempty set of maximal flags of rank |J| such that, for each
order i1, i, ...,is on J, each maximal flag is uniquely defined by its representative of KM | its
neighbor of kind (M;,, fi,) is uniquely defined by f;,|M;, —M;,, a flag element of kind (M, fi,) is
uniquely defined by the projection f;,|Mis — M;, (| M;,, and a representative of K™ is uniquely
defined by the projection of f;, onto K;, — M;, (\Mi, (- Mi.,_,.

As follows from the definition of Schubert systems, the sets D; = M; — My (Mg -+ M;—1 ()
(N M1\ Miqo--- Mg are nonempty. For each flag of kind (M, f1), (Ma, fa),...,(M;—1, fi—1),
(Mita, fix1), (Mito, fix2) ..., (Ms, fs), its completion to the maximal flag by adding (M;, f;) is
uniquely defined by the projection of f; onto D;. A natural example of the Schubert system can be
obtained via the restriction of the incidence relation of the geometry I'(G) =T'y T2 J---UTw
of a simple Lie group G of the normal type onto a disjoint union of large Schubert cells of
maximal degree in each I';, ¢ = 1,2,...,n.

More general examples correspond to Kac—-Moody groups. Let L be a Kac-Moody algebra
defined by the Cartan matrix A over the field of complex numbers C. The algebra L can be
written in the form L~ + Ly 4+ LT, where L is a Cartan subalgebra, and L™ is a direct sum
of root subspaces corresponding to positive real and imaginary roots r in the chosen Chevalley
basis. Let aj,as,...,a, be the list of fundamental roots, then dual elements a7, as,...,a; form
a basis in Lg. Let us denote, by Lz, a Lie groupoid of all vectors in L with integer coordinates
in the chosen basis. Let K be a commutative ring. Then the tensor product of Lz and K is a
Lie groupoid Ly over K. Let I'; be the totality of elements in K of kind a;* + x, where z is
an element of the direct sum S; of root subspaces L,, where r is a positive root, and a;(r) is
different from zero. We define an incidence system ST'(A, K'), which is a disjoint union of I'; such
that x from I'; and y from I'; are incident if and only if [x,y] = 0. As was shown in [3] (see
also [4]) in the case of a finite-dimensional algebra L over the field K of characteristic zero (or
“sufficiently large” characteristic), the incidence system ST'(A, K) is isomorphic to the Schubert
system of the geometry of a simple group G, which is an adjoint group for the Lie algebra L. If
det(A) = 0, then the incidence system ST(A, K) is a variety of infinite dimension (see [4]). In
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the case of K = Fy, ST'(A, K) can be approximated by a finite Schubert system obtained by the
change of the space L by a direct sum of root spaces L,, where the positive root r satisfies the
condition r < 7o for certain ry and the chosen lexicographical order on roots (see [4, 5]). In a
similar way, the Schubert system of the geometry of a simple Lie group of the twisted type can
be embedded into the corresponding Lie algebra [6].

Let I', I be an incidence graph in the Schubert incidence system over a commutative ri-
ng K. Geometry elements forming two flags Fy = {(My, f1), (Ma, f2),...,(Ms, fs)} and Fy =
= {(M;, 15), (M, £, ..., (M, £f5)} may be located at the same connected component of 1,
or the representatives of 7 and F5 are from distinct connected components. Assume that the
system of equations G1(x) = a1, Ga2(x) = ag, ..., Gr(x) = ak, where a; € K are some constants,
defines the connectivity invariants. For elements x,y € I'; from the same connectivity component,
the relation G;(x) = G;(y), i = 1,2,...,k, holds.

The existence of i such that G;(x) = G;(y) implies that x and y are vertices from different
connected components of graph I.

On the flag varieties and walks on them. Finite geometries and the metric spaces
connected with them are traditionally used in coding theory. Some cryptographical applications
of finite geometries were proposed in [7]. The idea to use walks in a Schubert system for the
generation of nonlinear bijective maps of vector spaces was proposed in [8|. The present arti-
cle is devoted to generalizations of cryptographical algorithms based on a Schubert automaton
proposed in [9].

Let us consider the set I'F' of maximal flags of a Schubert system. We define the spectrum
spec(F) of a flag F = {(My, f1), (Ma, f2),...,(Ms, fs)} as a sequence of colors t; = f;|M; —
—(MyUMa---UMica UM U+ - - U M) of its elements (M;, f;). We introduce the adjacency
relation R on the set I'F as the following relation (or graph): the intersection of two flags is a
flag of rank s — 1. We refer to maximal flags satisfying relation R as adjacency flags.

If FiRE, for ﬂags Fy = {(Mla f1)7 (M27 f2)7 te (MS7 fs)} and Fy = {(MlJrv flJr)7 (M2+7 f2+)7

(M, f)}, then there exists the index i such that colors t; and t; are distinct, and the
functions f; and f;" differ by their values on M; — My Mo+~ U M1 UMia U+ - U Ms. As
follows from the definition of Schubert systems, the operator N';+ (F)), which maps a flag F' with
spectrum (t1,ta,...,t;_1,t;,tiy1,...,ts) into the adjacent flag F™ of color (t1,t,...,t; 1, t;L,
tit1,-.-,ts), is well defined. Obviously, the equality ¢; = ¢; implies that N;(F) = F. We define
the color of the edge of graph R between vertices F' and FT as number i. The composition
NZ;NZ; e N;: for different colors {ij,is,...,ix} computed for flag F' corresponds to walk F,
Fy = Nj\(F), F, = N2 (Fy),...,Fy = N/*(Fy_1) in graph R. Note that edges FRFy, F1RF,. ..,
Fi._1RF}, are colored in distinct colors. As follows from the definition of a Schubert system, the
varieties of maximal flags I'F and the color spaces §; = KMimMUM2U-UMi—iUMip1U-UMs 0

free modules over the commutative ring K.

Let @ be a subring K such that K is a free module over @) of dimension d. Then I' " and S;
are affine spaces over () of dimensions v and wv;, respectively. It is clear that d is a divisor of
these integers. Polynomial functions G;: Q¥ — Q® map the affine variety of flags T'F (Q) over the
commutative ring ) into spaces A; of dimension d. We refer to the direct sum S(A) of spaces
Si(A;) as the spectral space (space of invariants) of the variety I'F/(Q)). With the maximal flag F,
we associate its trace sp(F') = (t1,t2,...,ts, G1(F),Ga(F),...,Gi(F)), where (t1,to,...,ts) is
the spectrum corresponding to the vector x(F') = (z1,22,...,%;), l =v1 + v + -+ + vg from §
and (G1(F),Ga(F),...,G(F)) is an element from the space of invariants, which could be given
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also by the vector y(F) = (y1,Y2,.--,Ym), m = td. Let f; = f(x1,29,...,21,91,Y2,-..,Ym) be
a polynomial (or birational) map from S + A into S; defined over the commutative ring, Q.
Let Z be an abstract flag from the totality I'F(Q)) with the spectrum z1, 22, ..., 2; and invariants
G1(Z2),Ga(2),...,Gn(Z). A specialization f;(Z) = fi(Z1,Za,...,2;,G1(Z),G2(Z),...,Gn(Z))
associates the tuple f;(Z) from S; with given Z. We define the symbolic code of a walk as
the string fi,, fiy,..., fi, of such maps, where the sequence i1, i2,...,% is such that s differs
from is1 for each s, and ¢ is determined by a certain function t = T(z1, 22, ..., Z1, Y1, Y2+ - -, Ym),
which maps S + A into the set ZT of positive integers. Let F be a flag from I'F(Q). First,
we compute its spectrum and the set of invariants G1(F'), G2(F),...,G¢(F') and get the tuple
(1,2, ..., T, Y1,Y2,---,Ym) (extended spectrum of the flag) from the module S + A. Then
we compute t = t(F) and f;, (F), fi,(F),..., fi,(F) for our flag F. It allows us to compute
N = N/'N/? .- N;™(F), where t;, = f; (F). So we get the element F* = N(F), which is the
last vertex of the computed walk in graph R. This means that the symbolic code f;,, fi,,--., fi, of
length t = T'(z1,29,...,21,Y1,Y2, - . ., Ym) determines the map N = N(fi,, fip,---, fi,) of TF(Q)
into itself. Under certain conditions, the reimage of flag F'* under the above-described map can
be computed. Obviously, the flags F'* and F are from the same connected component of graph R.

So, for the extended spectra (z],z7,... ,:Uf,yi",y;', cooytY and (21,22, T YL Y2y - - s Ym)s
the following equalities hold: yf = 1, y; = Y2,..., Y = ym. The tuple (CEIL,$§L,...,$;+) is

uniquely determined by the symbolic code and the spectrum of flag F'. For each i, we consider
the function of kind f;,., i, = ¢, which appears in the symbolic code on the last position. If
such a function really exists, we denote it by f;; if not, we assume f; = x;. We refer to the
set f1,fs,...,f{" as the boundary of a symbolic code. For each function f; of the symbolic
code, we denote the previous function with the index i by fi:’ if such a function exists. If not,
we assume that f:; = x;,. It is clear that xj = f*i(x1,29,..., ;) for each i. Let us assume
now that the map g from S into itself shifting x; into CE;L is a bijection. Then flag 't can
be used for the computation of the spectrum g_l(xl,xg,...,xl) and the set of invariants y;
of F'. We can compute the length ¢ = T'(x1,22,...,%1,y1,¥2,---,Ym) and the reverse walk Ft,

F;, = N};(Fﬂ, E, , = }ffll(Fit_l), . F= N}}(Fl). Note that sp(F'") = (z],23,...,z7),
(23 1t —

where the coordinate ﬂ:;r equals z; plus the sum of all f; for j equal to ¢. The simplest example
of invertible functions can be obtained in the case where all functions f; are linear functionals
of the kind z; HY(F) + 2o H2(F) 4 - - - 4+ 2, H(F) + H°, where H® and H' depend only on 1,

Y2, .- Ym, and the matrix H7(F), j € {iy,i,...,i}, i = 1,2,...,1, is invertible.

General algorithm of encryption. Let us consider the following private key encryption
algorithm. Let I'F',,(K') be a sequence of varieties of maximal flags of Schubert systems I'y,(K)
of rank n over finite commutative rings K of increasing order. The parameter d = d(n) will
stand for the dimension of the variety of maximal flags in I'F},(K). Let us assume that @ is
a subring of K such that a commutative ring K is isomorphic to a free module Q™ over Q.
Let T'F,(Q) be a set of maximal flags as a variety of dimension dm over ). Correspondents
Alice and Bob consider the variety T'F,,(K) as a plainspace I'F,(K). A subring @ will be
treated as a part of the common key. Similarly to the case of the Imai-Matsumoto multivariate
cryptosystem, the key contains two bijective affine transformations L; and Lo of the variety
I'Fin(Q). So, the plaintext can be identified with the string x = (p1,p2,...,Pam) Written as
a row vector in the alphabet Q). The transformation L;: x — xA; + b;, ¢ = 1,2, is given by
the matrix A; of size dm and the vector b;. We assume that the orders of transformations T;,
i = 1,2, increase with the parameter n. The “nonlinear part” of the key (symbolic code) is
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a “potentially infinite” sequence of pairs (is, fi,), where f;, = f(z1,22, .., 2, Y1,Y2, -, Ym),
s =1,2,...,N, is a polynomial (or birational) map from S + A into S; defined as above. We
assume that the boundary of the symbolic key {f;, f5,..., f;'} is fixed, and the expansion of
this key can be achieved by writing, from the left, a new set of initial elements. Additional
requirements are inequalities i5 # 7511, which hold for each s. The key contains also three time
functions h; = t;(x1,22,..., 2, Y1,Y2, -, Ym), ¢ = 0,1,2, which are certain maps from S + A
into the set of positive integers Z*. At the beginning, Alice applies the affine transformation L;
to the plaintext x and gets the flag F' = L;(x) written as a string over the alphabet K. Then she
computes the length h = ho(F') of the nonlinear part of the symbolic key, as well as the values
fi(F), fir(F), ..., fi, (F') of functions from the symbolic key for the obtained flag F'. The next
step for Alice is the computation of N = Ntll1 Ntf -+ Ny (F), where t;, = f; (F), and she gets
the last flag of computed walks F'* = N(F). The flag Lo(F ") = Y is sent to Bob via an open
channel. We shall assume that the input and output data for our encryption algorithm are given
in the form of tuples over the commutative ring K. The length of the sequence (is, f;,) is chosen
in a special way, so the reimage of flag I'" for the map N is always computable (or computable
in the case of “almost all” flags). Bob gets Y and computes flag Lo *(Y) = F", which belongs
to the connected component of graph R containing F'. He computes numerically the invariants
G1(FT), Go(FT),...,G¢(FT) and uses the boundary {f, fs,..., f;'} for the computation of
the spectrum of F. He computes the reverse walk in the graph R for finding its initial vertex F'.
Finally, Bob computes Lfl(F ) and writes this tuple in the form of a string over the alphabet K.
At the end of the communication session, the correspondents may change affine maps L; and Lo
for their powers L;7t, i = 1,2.

An example of effectively computable enciphering map. Obviously, an arbitrary li-
nguistic graph is a Schubert structure. Let K be a finite commutative ring. Let us consider
the infinite bipartite graph D(K) with the point set I'y = P consisting of elements x =

= (z1,22,23,25 ,...,Tn, T, ,...) and the line set I'y = L consisting of lines y = [y1,v2,y3,Y5 , - -,
YnsYn » - - -] with the incidence relation I : xIy, x € P, and y € L if and only if the following
two sets of relations hold:

(1) 22 —y2 = Y171, T3 — Y3 = T1Y2, T4 — Y4 = Y173, T5 — Y5 = T1Y4, -5 T — Yn = T1Yn—1
for odd n and z, — ¥y, = y1T,_1 for even n.

(2) 23 —ys =122, Ty — Yy = T1Y5, Ty — Y5 = Y1Ty, ..., T, — Y, = Y12,_, for odd n

and x,, —y, = x1y,,_, for even values of parameter n. Let us consider also the bipartite graph
D(n, K) defined on the set of points P, = K" and lines L,, = K" in the following way: vectors
x, and y, from P, and L,, are identified with the projections of the infinite tuples x € P and
y € L into their n initial coordinates, x,, and y,, are connected by an edge if and only if the first
n — 1 relations from the definition of incidence of x and y hold. In the case K = Fj, the family of
graphs D(n, K) = D(n,q) together with special induced subgraphs was defined in [10]. In that
paper, some extremal properties of these graphs were investigated. For the general commutative
rings, the simplest properties of D(n, K) and CD(n, K) were considered in [11].

The most general connectivity properties of graphs C'D(n,K) were obtained in [12]. The
discrete dynamical systems corresponding to these families of graphs were studied in [13]. If the
characteristic of a commutative ring K equals 2, then the graph C'D(n,K) simply coincides
with the connected component of D(n, K). Note that all connected components of D(n, K) are
isomorphic. The partition sets P, and L,, of the graph C'D(n, q) can be identified with K, where
t =[3/4n] + 1 for n = 0,2,3 (mod4) and ¢ = [3/4n] + 2 for n = 1 (mod 4).
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It is known that there exist m quadratic invariants ay, as, ..., a; where m = [1/4n] — e with
e=—1forn=0,2,3 (mod4) and e = 0 in the remaining case such that, for two points (or lines)
x and y of the graph D(n,q) from the same connected component, the equalities a;(x) = a1(y)
and as(x) = az(y), ..., am(x) = ap(y) hold. The inequality a;(x) # a;(y) for some i implies that
x and y are vertices from distinct connected components.

In the case of characteristic 2, the above-written conditions uniquely define the partition into
connected components. Colors of point (x) = (x1,z2,...,2,) and line [y] = [y1,y2,...,yn] are
just the first coordinates z; and y; of these tuples. The flag (x), [y], (x)I[y] of this linguistic
graph is uniquely determined by coordinates of point (x1,z2,...,x,) and color y; of line [y].

Let us assume that the commutative ring K is a free module Q" over another ring @, and
the multiplication of K is a quadratic map of K x K into K over (). The natural example
is the Kronecker extension of the ring @, i.e. K = Qlz|/g(x), where g(z) € Q[z] is some
polynomial.

Let us consider the above-described algorithm in the case of a symbolic key x1 4+ dy, y1 +
+df,...,x+d;, y1+d;" of even variative length 21, I = T(x,y1) (in the case of odd length 2/+1,
one can use the symbolic key (z1+dy,y1+df, ..., x+d;, 1 —i—ler, x;+di11)), where the function T’

is obtained from the map f(z1,22,. .., 2, 2r41, 2042, - - - 5 221, 227 4+15 220425 - - - » Zp(m+2)) from the
set Qr(m+2) into ZT by the specialization (z1, 2o, . . . s Zr(m+2)) = (zf, 25, .. ot vl us, .yt
11, Q125+ -+ s Ay Q215022+« s Apy v+ s Qypls A2,y « -+ 5 Gy ), Where (xf,x;, .. ,x;r) and (yfr,y;,

..,y}) are coordinates of the flag xIy written in the chosen base of K = Q"
and (a;1,a42,...,a;), @ = 1,2,...,m, are the coordinates of the invariant values

a1(x), ag(x), ..., am(x) of the point x from the flag. Let the flag from K™ be defined by the
vector v of the free module QT("+1). Let L; and Lo be two invertible affine transformations of
the plainspace QT("H). We assume that they are a part of the key of our symmetric algorithm.
For simplification, we assume that the length of a symbolic key is an odd number.

Let us denote, by N, the composition of maps Ny, 14, Ny1+djv Nyotdys Ny2+d;, ooy Ngyyay,

y1
(a) application of the affine map Lj to the plainspace v, the resulting vector Lji(v) from

QT("H) have to be written as a vector u from the free module over the extension K of Q.

N, . dt The encryption consists of the following steps:

(b) the computation of the vector w = N(u) and its presentation by the vector w* in the
chosen base of Q"("t1),

(c) computation of the vector z = Lo(w™). The deciphering is the reverse process. The
correspondent (Bob) receives the ciphertext z in the form of a vector from Q"1 He computes
Ly~! and writes this vector as a element w from K™™', Then Bob defines u = N~!(w) and
writes the result in the form of a vector u™ with coordinates from Q. For the determination of
the plainspace v, he writes Lfl(u+) in the form of an element from K"*!.

On the properties of an encryption map It turns out that, independently of the choice

of sequences di, do,...,d; and df, d;, .. ,dl+, the transformation N is a polynomial map of ki-
nd (xl?x% I ’xn) — (fl(xlyx% I aanrl)’ f2(x15$2a s aanrl)a s ,fn($1,$2, I aanrl))? where
all polynomials f;(z1,22,...,2n41), ¢ = 1,2,...,n, n + 1, are cubic (see [15] and references

therein). This means that both the encryption map F = L;NLs and the inverse map E7l =
= L7'N7'Ly!, together with the inverse map E' = L4 N’L] are cubic transformations. Recall
that E~! corresponds to di, do, . ..,d; and dy, db,...,d; written in the inverse order.

Let us assume that a fixed key is in multiple use, and the adversary has an access to some
plaintext and can obtain a rather large set of pairs of the plaintext-ciphertext kind. In this case,
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the fact that the degree of the polynomial inverse map is bounded by 3 makes the linearization
attacks feasible. In fact, the key can be computed in a polynomial time. The above-written
condition is not a realistic one. So, the cubic encryption map was used for the protection of real
communication networks for various rings.

First, the algorithms were used in the case of prime finite fields (e.g., Zi27). Then the ari-
thmetical rings Zon, n = 7,8, 16, 32, and the Galois fields Fon for n = 7, 8,16, 32, were used. The
attractive side of the encryption algorithm is its speed (complexity O(nl)), resistance against
attacks without access to plaintexts. In the case of [ < [n/2] + 2 and K = F, the different
sequences d; (d; # di11), di, (df # d;-:l, i=1,2,...,1) give different ciphertexts. The generali-
zations of this fact to the case of arbitrary commutative rings are given in [13]. Computer
simulations (see surveys [14], [15] and references therein) in the case of a special choice of affi-
ne transformations demonstrate that the encryption function has strong mixing properties. It
satisfies the well-known Madryga’s requirements: change of one character in the plaintext or in
the key leads to a change of the vast majority characters of the ciphertext if the alphabet K
is used.

The enciphering algorithm with the key of variative length described in the example gi-
ven above allows one to increase the level of resistance of an encryption against attacks with
an access to some plaintexts without essential change of the robustness and the mixing qua-
lity.

The dependence of the length function [ on a plainspace makes classical linearization attacks
impossible.

Let us show that the complexity of the known difficult discrete logarithm problem can serve

as a security argument for the algorithm. Assume that the sequences d; and d;r, i=1,2,...,1,
are periodic. This means that there exists r such that [ = r;, d;:r = dj, diyr = d;. Additionally,

we assume that L; = in1 and the parameter r is constant. Let G = L;NT Lo, where the
map NT = le+d1Ny1+d1+Nm+d2Ny2+d2+ .-+ Nz, +d;, Ny, + d Ly is computed with the use of
some computer algebra program. The resulting polynomial transformation G will be written
as (x1,xe,...,xn) = (g1(z1,22, ..., Tny1), g2(T1, T2, .o, Tpt1)s - Gn(T1, T2, . .., Tpy1)), Where
each polynomial g;(z1,z2,...,2p+1), 4 = 1,2,...,n+ 1, is a cubic expression given by a list of
monomials in lexicographical order. So, the value of G at the given point will be computed in
the time bounded by O(n?). Note that the order of a map G coincides with the order of N7.
As follows from the above-written facts, each power of the map G in the symmetric group
S(K™) is a cubic map or the identity. Let M be a multiplicative subset of the commutative
ring K. This means that M is closed under multiplication and does not contain zero. If all
di + diy1, dj + d;:l, it =1,2,...,1, and di + d, df + dlJr are elements of M, then the order
of the transformation G tends to infinity with the growth of the parameter n. The increase of
the map order is going on with the increase of the characteristic of the ground ring (see [13]
and references therein).

Recall that, in our case, the correspondents use the periodic map G = G,, and the length
function [ is a function of the plainspace, which can generally has any value. We assume that
the adversary can get many pairs (p,c), where p is a plaintext, and ¢ is a corresponding ci-
phertext.

Additionally, we assume that the basic polynomial G is known to the adversary. The natural
attack on the key can be conducted via the investigation of the equation G*(p) = ¢ with the known
tuples p and ¢ and the unknown positive integer z. So, we get the discrete logarithm problem
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for the cyclic subgroup generated by G. We have to solve the equation G* = H, where H is
some function transforming p into c. The opponent could not solve this problem in the case of a
sufficiently large number of variables, because the order of GG is increasing, but the degree of the
right-hand side is still cubic. The investigation of iterations of G brings no additional data for the
investigation of the discrete logarithm problem. The adversary can determine G~' by computing
many pairs of kind (v, G(v)) and by conducting a linearization attack. The computation of the
unknown functions I = I(z), j(z) = I(z)/r, and G (z) is related to the above-mentioned discrete
logarithm problem with the base G. Note that the function j(x) can be very sophisticated, for
instant, defined as a specialization of the known Matijasevich polynomial.

The author expresses his sincere gratitude to Professor Richard Weiss (Boston) for his constant
support of the idea to use geometries over diagrams for the problems of informational defence and a
stimulating lecture course at the University of Maria Curie Sklodowska in Lublin.
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B. A. YcrumeHnko

O GayKkaHUSAX MepeMeHHO! JJIMHBI B CUCTEMAaX WHIINEHTHOCTU
IITy6epTa 1 MoJIMHOMUAJIBHOM IMOTOKOBOM HIM(POBAHUN

IIpednooicen arzopumm nomoxosoz0 WUPGPOSAHUA, OCHOBAHHBLT HA OAYAHCOGHUAT HaA MH02006p0-
auax Paazos cucmemv, Illybepma, onpedesennoti Had KOMMYMAMUSHM KOALYUOM. [Ipumepom
cucmemwvr [lybepma asasemcea o2parusenue OmHOWEHUT UHYUIEHMHOCTNUY 2E0MEMPUL NPOCMOTL
epynno. JIu HOPMAABHO20 MUNG MG 00BeUHEHUE DOALWUT KACMOK MAKCUMANOHOT PA3ZMEPHOCTIU.
Boaee obwue npumepv, coomsememeyrom epynnam Kavya—Myodu. Ilpuseden npumep ucnosv3osa-
HUA MAKUT CUMMEMPUYHUL GAZOPUMMOG, ONPEJEAEHHBIT HA MEPUOOUNECKUT OAYNCOAGHUAT, OAA
C030aHUA NYOAUUHO20 KAI0UG, HE30NACHOCTD KOOP020 C8A3AHA C NPOOAEMOT QUCKDEMHO20 A020-
PUPGMA OAA YUKAUMECKUL NOOZPYNN, NOANUHOMUGALHOLT NPEOOPA30CAHUT 603PACTNANOUWE20 NOPAJKA.

B. O. Ycrumenko

IIpo 6urykanHs 3MiHHOIT JOB2KUHU B cucteMax iHiuaeHTHOCTi [Ily6epra
Ta MOJIIHOMiaJIbLHOMY CTPYMEHEBOMY KO/IyBaHHi

3anpononosano ar2opumm CmpyYMeHe6020 K00YSaHHA, U0 2PYHMYEMbCA Ha OAYKANHAT HA MHO20-
eudax npanopie cucmemu Illybepma, sudrnavenoi nad xomymamuerum xKiavuem. IIpuxiadom cuc-
memu LHlybepma e obmesicenmna 6i0nowerd ihyudenmuocmi 2eomempii npocmoi epynu JIi mopmasv-
H020 MUNY MG 00 €ORAHNA BEAUKUT KAIMUH MAKCUMAADHO20 6uMipy. Birvw 3azasvii npuraadu
noe’asani 3 epynamu Kaya—Mydi. Hasoderno npuraad ukopucmanis maxur CmpyMeHesur aa2o-
PUMMIB, BUIHAMEHUT MG NEPIOOUMHUL OAYKAHHAL, OAL CMGOPEHHA BIOKPUMO20 NOATHOMIGADHOZ0
KA0%a, be3nera AK020 NOG A3aHA 3 NPOOAEMOIO QUCKPEMHO20 N02APUPMA OAA UUKATYHUT Nid2pYyn
NONTHOMIANDHUL NEPEMBOPEHD 3POCMAION020 NOPAIKY.
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