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We obtain a new Liouville comparison principle for weak solutions (u,v) to semilinear parabolic
second-order partial differential inequalities of the form

— Lu— |u|T = v — Lo — |v]T (%)

in the whole space R x R"™. Here, n > 1, ¢ > 1, and

0
L= Z {a” (t,x 6%}

’le

where a;;(t,x), i, j =1,...,n, are functions that are defined, measurable, and locally bounded
in R x R™ and such that a;j(t,x) = a;;(t,z) and

n

Z ag(t,x)&& >0

1,j=1

for almost all (t,z) € R x R™ and all £ € R™. We show that the critical exponents in the
Liowville comparison principle obtained, which are responsible for the non-existence of non-
trivial (i. e., such that u £ v) weak solutions to (x) in the whole space R x R", depend on the
behavior of the coefficients of the operator L at infinity and coincide with those obtained for
solutions of (%) in the half-space Ry x R™. As direct corollaries, we obtain new Liouville-type
theorems for non-negative weak solutions u (x) in the whole space R x R™ in the case where
v = 0. All the results obtained are mew and sharp.

Introduction and preliminaries. This work may be considered as a supplement to paper [1]
and is devoted to a new Liouville comparison principle for weak solutions to parabolic inequalities
of the form

— Lu — |u|" > v — Lo — |7 (1)

in the whole space E = R x R"™, where n > 1 is a natural number, ¢ > 1 is a real number, and L is
a linear second-order partial differential operator in the divergence form defined by the relation

L= ,;1 [awtx) aij (2)

for all (t,z) € E. We assume that the coeflicients a;;(t,x), 4,j = 1,...,n, of the operator £
are functions that are defined, measurable, and locally bounded in E. We also assume that
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a;j(t,x) = aji(t,x), i,j = 1,...,n, for almost all (¢,z) € E, and the corresponding quadratic
form satisfies the conditions
n
0< Y ay(t,2)&8 < At )¢l

ij=1

for all £ = (&1,...,&,) € R" and almost all (¢,x) € E, where A(¢,x) is a function that is defined,
measurable, non-negative, and locally bounded in E.
It is worth to note that if u = wu(¢,x) satisfies the inequality

up = Lu+ |u|q71u, (3)
and v = v(t,x) satisfies the inequality
vy < Lo+ o], (4)

then the pair (u, v) satisfies inequality (1). Thus, all the results obtained in this paper for solutions
to (1) are valid for the corresponding solutions to inequalities (3) and (4).

The results obtained in [1] for solutions to inequality (1) in the half-space S = (0, +00) x R",
n > 1, show that the behavior of the coefficients a;;(¢, z) of the operator £ as || — 400 manifests
itself in Liouville-type results; namely, the critical exponents in the Liouville comparison principle
for weak solutions to (1) in the half-space S, which are responsible for the non-existence of non-
trivial (i.e., such that u # v) weak solutions to inequality (1) in S, depend essentially on the
behavior of the coefficients of the operator £ as |z| — +oc.

The main goal of the present work is to show that similar critical exponents in the Liouville
comparison principle for weak solutions to (1) in the whole space E also exist and, what is
more intriguing, coincide with those obtained in [1] for solutions to (1) in the half-space S. In
this connection, it is important to note that the latter, generally speaking, is not the case for
solutions to the equations corresponding to inequalities (1), (3), and (4). To make certain of
this, it is enough to compare the famous Fujita critical blow-up exponent qr = 1 + 2/n for
non-negative classical solutions to the equation

up = Au+ ulf (5)

in the half-space S obtained in [2-4] with the blow-up exponent for non-negative classical solutions
to equation (5) in the whole space E obtained in [5, 6], which is equal to

2
42 s

g = (n— 1)2
400, if n=1.

In order to trace the relation between the behavior of the coefficients a;;(t, z) of the operator
L as |z| — 400 and the critical exponents that are responsible for the non-existence of non-trivial
weak solutions to inequality (1) in the whole space E, we consider the quantity

A(R) = €8SSUD(; 1) (o0 +00)x { R/2<|a| <R} A(L: )
for any R > 0 and assume that the coefficients of the operator £ satisfy the condition

A(R) < cR*™® (6)
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with some real constant o and some real positive constant ¢, for all R > 1. It is clear that if
a < 2, then the coefficients of the operator £ may be unbounded in E; if o = 2, they are globally
bounded in E; and if @ > 2, they must vanish as |z| — +o0.

We also introduce a special function space W+ “4(IE), which is directly associated with the
linear partial differential operator P = 9/t — L, and assume that the weak solutions to inequali-
ties (1), (3), and (4) belong to this space only locally in E.

Definition 1. Let n > 1 and ¢ > 1, let £ be a differential operator defined by (2) in the
whole space E, and let {2 be an arbitrary domain in E. By Wﬁ’q(Q), we denote the completion
of the function space C°°(£2) with respect to the norm

1/q
/ |w|?dtdx
Q

ow ow
/ lea” (t,x a—a—dtd
where C*°(Q2) is the space of all functions defined and infinitely differentiable in 2.

Definition 2. Let n > 1 and ¢ > 1, and let £ be a differential operator defined by (2) in
the whole space E. A function w = w(t, x) belongs to the function space I/V1 Y(E) if w belongs
to W54(Q) for any bounded domain Q in E.

Definition 3. Let n > 1 and ¢ > 1, and let £ be a differential operator defined by (2) in the
whole space E. A pair (u,v) of functlons u=u(t,x) and v = v(t,x) is called a weak solution to
inequality (1) in E, if these functions are defined and measurable in E, belong to the function
space I/Vlﬁéq(E), and satisfy the integral inequality

)

Julleae) = / it +

= Oy Ou 1
upp + Z aij(t,x) 57—— — |ul? ugo] dtdx >
]E/ ij—=1 83:2 axj
Op Ov 1
>/ v + ]Z:l a;;(t x)ax (9 — |vl? vgo] dtdx (7)

E

for every function ¢ € C°°(E) with compact support in E, where C*°(S) is the space of all
functions defined and infinitely differentiable in E.

Remark 1. We understand inequality (7) in the meaning discussed, e.g., in [7].

Analogous definitions of the solutions to inequality (3) and inequality (4) in E, as special
cases of inequality (1) in E for v = 0 or u = 0, follow immediately from Definition 3.

Theorem 1. Letn > 1, a >0, and 1 < ¢ < 1+ a/n, let L be a differential operator defined
by (2) in the whole space B, whose coefficients satisfy condition (6) with the given « and some
¢ >0, and let (u,v) be a weak solution to inequality (1) in E such that uw > v. Then uw = v in E.

As we have observed above, since any pair of solutions u = u(t,z), v = v(t,x) to inequaliti-
es (3) and (4) in E is a solution (u,v) to inequality (1) in E, the following statement is a direct
corollary of Theorem 1.

Theorem 2. Letn > 1, a >0, and 1 < g < 1+ a/n, let L be a differential operator defined
by (2) in the whole space E, whose coefficients satisfy condition (6) with the given « and some
¢ >0, let u=u(t,z) be a weak solution to inequality (3), and let v = v(t,z) be a weak solution
to inequality (4) in E such that v > v. Then v = v in E.

Each of the results in Theorems 1 and 2, which obviously have the character of a comparison
principle, we term a Liouville-type comparison principle, since, in particular cases where either
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u =0 or v =0, it becomes a Liouville-type theorem for solutions to (4) or (3), respectively. We
formulate here only the case where v = 0.

Theorem 3. Letn > 1, a >0, and 1 < g < 1+ a/n, let L be a differential operator defined
by (2) in the whole space E, whose coefficients satisfy condition (6) with the given « and some
¢ >0, and let u = u(t,x) be a non-negative weak solution to inequality (3) in E. Then u =0 in E.

Note that all the results in Theorems 1-3, including the partial case where £ is the Laplacian
operator, are new and sharp. (We demonstrate their sharpness below by Examples 1-2). Thus, as
we have already mentioned above, the critical exponents in Theorems 1-3, which are responsible
for the non-existence of non-trivial weak solutions to inequalities (1), (3), and (4) in the whole
space E, coincide with those obtained in Theorems 1-3 in [1] for weak solutions to the correspondi-
ng inequalities in the half-space S. In the particular case where ao = 2, the critical exponent in
Theorems 1-3 coincides with the well-known Fujita critical blow-up exponent obtained in [2-4].

Example 1. Let n > 1, « > 0, and ¢ > 1 + a/n. Consider the operator £ defined by (2) in
the whole space E with the coefficients given by the expression

ag(t,x) = (1 + |z[?)F 2, (8)

for all (¢,z) € E, where ¢;; are Kronecker’s symbols, and ¢,j = 1,...,n. It is easy to see that
condition (6) is fulfilled for these coefficients with the given a and some ¢ > 0. Further, for
the given «, let

_ (kt7PE,x), if t>0, zeR"
ult,z) = {0, if +<0, z€R", (9)

where £(t,x) = exp(—v(1 + |z[})*/2/t) for all t > 0 and = € R, and the positive constants 3,
v, and & will be chosen below.

First, since the function u = u(t, ) of the form (9) with any fixed positive constants «, 3, v,
and k is infinitely differentiable in the whole space E and vanishes, along with all its derivatives,
for all t < 0 and = € R", it is clear that u = u(t,z) is a classical solution to inequality (3) for
all t < 0 and z € R™

Now, consider the case where t > 0 and = € R". Making necessary calculations, we have

up = —kBtPTIER, @) + ryt TP+ |2)?)2E (L, ),

O a5 (1 + ) ()
6%
and
0 ou x2
O o3 VO o pemp—B1 2, 2462 nas2
o <a“(t,m)axi> aryt E(t,x) + oyt (1+ |z]) T ‘x’25(t,x)

for all t > 0 and = € R", where the coefficients a;;(t,z) are given by (8), and i = 1,...,n.
Further, it is also easy to calculate that

|

14 [af?

wy — Lu = (kny — kBEPTIE(L, x) + (/{7 — a?ky? >t52(1 + |z>)*2E(t, x)

and

lu|9 u = kItPIEI(t, 2).
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As a result, inequality (3) with u = u(¢,x) given by (9) takes the form

(akny — kBETPLE(, x) +

2

— ol kA2 —B-2 2ya/2 > 0p—Bagca
—i—<f@7 Ky 1—|—|x|2>t (L+ |z|*)*E(t,x) = kU™PIEUL, o) (10)

for all £ > 0 and = € R™. Now, choosing the constants 3, v, and x such that

1 1 1\2 1 1/(qg—1)
= waey<(a) 0 (ol any) @

and taking into account that £(¢,z) < 1 for all ¢ > 0 and x € R", it is not difficult to verify that
inequality (10) holds for all ¢ > 0 and x € R"™. Therefore, a function u = u(¢, z) of the form (9)
with the given o and ¢ and with the constants 3, v, and & satisfying conditions (11) is a positive
classical solution to inequality (3) for all ¢ > 0 and z € R".

Thus, we may conclude that the function u = u(t, z) of the form (9) with the given « and ¢
and with the constants (3, -, and & satisfying conditions (11) is indeed a non-trivial non-negative
classical solution to inequality (3) in the whole space E with a;;(¢,x) that are the coefficients
of the operator £ defined by (8). It is clear that the function v = —u(t,z) is a non-trivial non-
positive classical solution to inequality (4) in the whole space E with a;;(¢,z) in (2) defined
by (8). Thus, the pair of functions v = u(t,z) and v = v(t,x) is a non-trivial classical solution
to system (3), (4), and, therefore, (u,v) is a non-trivial classical solution to inequality (1) in the
whole space E such that u(t,z) > v(t, ), with a;;(¢,2) in (2) defined by (8).

Note that the non-negative classical supersolutions to linear uniformly parabolic equations
with globally bounded coefficients in the non-divergence form in the whole space [E except the
origin of coordinates in a form close to that given by relation (9) with o = 2 were constructed
in [8, p. 122]. Note also that the positive classical supersolutions to equation (5) in the half-space
S in a form close to that given by relation (9) with v = 2 were constructed in |9, p. 283].

Example 2. Let n > 1, « <0, ¢ > 1+ a/n, and ¢ > 1, and let @ be any positive number
such that ¢ > 1 + @/n. Consider the operator £ defined by (2) in the whole space E with the
coefficients given by the relation

aij(t,0) = (1+ |«) 29 g (12)

for all (t,z) € E, where 0;; are Kronecker’s symbols, i, j = 1,...,n. As in Example 2, it
is easy to see that A(R) < CR*® for all R > 1, where C is some positive constant which
depends, possibly, on @ and n. Therefore, condition (6) is fulfilled for these coefficients with the
given o and some ¢ > 0. For the given @ and ¢, let 8 = 1/(¢ — 1), 1/(an(q — 1)) < v < 1/a2,
0 < & < (@n(y — 1/(an(qg — 1))@V and

2\&/2
-8 (A fa]7) . n
u(t,z) = Kt exp< y " , if t>0, zeR" (13)
0, if t<0, zeR"™

Again, as in Example 2, it is not difficult to verify that the function u = wu(t,z) defined
by expression (13) is a nontrivial non-negative classical solution to inequality (3) in the whole
space E with a;;(t,z) in (2) defined by (12). It is clear that the function v = —u(t,z) is a
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nontrivial non-positive classical solution to inequality (4) in the whole space E with a;;(t, z)
defined by (12). Thus, the pair of functions v = u(t,z) and v = v(¢,z) is a non-trivial classical
solution to system (3), (4), and, therefore, (u, v) is a non-trivial classical solution to inequality (1)
in the whole space E such that u(t,z) > v(t,z) with a;;(¢,x) in (2) defined by (12).

Note that Examples 1-2 are constructed on the basis of those in [1].
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B.B. Kypra

IIpunanun nopiBusHHA JIiyBijiis ajis po3B’a3KiB HaNiBJIIHITHIX
napaboJIiYHNX HEPiBHOCTEN JIPYyroro Nops/Ky B YaCTUHHUX IOXIJTHUX
Y BCbOMY ITPOCTOPI

Bemanosaeno npunyun nopishanhs Jiyeiaia oaa crabkux pose’saskie (u,v) HanieAtHiGHUT napa-
boaTuHUT HepisHocmel: 0pYy2020 NOPAJKY 6 HaACMUHHUT NOXIOHUX 6udy

g — Lu — |ulT u = v — Lo — |v]T M (%)

y ecvomy npocmopi R x R™, Tymmn > 1, q > 1 4

9 0
E: Z 8_1'1 |:al_](f,$)a—z]:| 5

4,J=1

de a;;(t,x) — eumipni, aokarvno obmesiceni e mpocmopi R x R"™ dynryil maxi, wo ai;(t,x) =
= aj(t,x) 4
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n

Z aij(t, 2)&&; = 0

ij=1

das matiorce eciz (t,x) € R X R™ ma scix € € R™. Iokasano, wo kpumusni noOKa3HUKY 68 00epirca-
HOMY NPUHYUNE nopieuanns JIiysisis, axi eidnosidatoms 3a HEICHYBANNA HEMPUBIAALHUT (MOo6MO
MAKUT, Wo u Z v) caabkur pose’asxie nepisnocmi (x) y scvomy npocmopi R x R™ zanescamo 6id
Nn060ddCEHHA KoePiuienmie onepamopa L Ha HECKIHYEHHOCT i 3012a10MbCA 3 KPUMUYHUMY NO-
KA3HUKAMU, OMPUMAHUMY 045 PO36°a3Kie nepiehocmi (x) y nanienpocmopi Ry x R™. Ak npami
HacAtdku odepotcarno nosi meopemu JIiysiana 0aa 1e6id’ eMHUT, CAGOKUT PO36°A3KI6 U HEPIBHOCTNI
(x) y ecvomy npocmopi R x R™ y eunadky, xoau v = 0. Bci 3006ymi pesysvmamu € nogumu
MOYHUMU.

B.B. Kypra

IIpuanun cpaBHeHus JInyBusjisa Jjisi pelieHuil NOJIyJIMHENHBIX
napaboJIn4ecKNX HEPABEHCTB BTOPOTO MOPSJIKA B YACTHBIX ITPOU3BOIHBIX
BO BCEM IIPOCTPAHCTBE

Yemanosaen npunyun cpasnenus JIuyeuans dan caabox pewenut (u, v) nosysunetnsr napabo-
AUMECKUT HEPABEHCNE 8MOPO20 NOPAIKG 8 HACTHVLL NPOUICOIHBIT GUda

g — Lu — |ulT u = v — Lo — |v]T (%)

60 ecem npocmparcmee R X R". 3decon > 1, ¢ > 1 u

"9 0]
ﬁ— Z a_@[aij(t,z>%j:|,

ij=1

ede ai;(t,x) — usmepumoie, A0KAALHO Ozpanuventbie 6 npocmparncmee R x R™ dynryuu makue,
wmo a;;(t,x) = a;i(t,z) u

n

Z aij(t, 2)&&; = 0

4,J=1

das noumu ecex (t,x) € RxR™ u ecex & € R”. Ilokazano, wmo kpumuseckue noka3ameit 8 nony-
YEHHOM NPUHYUUNE CPABHEHUA JTUYBUAAA, KOMOPBIE OMBEYAIOM 30 HECYULECTNBOBAHUE HEMPUBUAAD-
HOZ (M. e. MaKUL, 4mo u £ v) caabvir pewenull Hepasencmaa (x) 6o ecem npocmparcmee R x R™
3asucam om nosedenus xoaphuyuenmos onepamopa L na beckonewnocmu u co8nadarom ¢ Kpu-
MUNECKUMU NOKAZAMEAAMU, NOAYIEHHOMU 0L pewenuti Hepasencmea (%) 6 noAYnpPoCmparcm-
ée Ry x R". B xauecmee npamovix caedcmeutdl noaywens, Hosvie meopemuv, Jluysuirs oan re-
OMPUYAMEALHBIT, CAGOBT pewenull u nepasercmaa (x) 6o ecem npocmparcmee R X R"™ 6 cayuae,
x02da v = 0. Bce noayuentvie Pe3ysbmamot AGAAIOMCA HOBMU U MOYHLMU.
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