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M3ydena 3agaya ONTHUMAIBHOIO YHPABICHUS I JIMHEHHOIO
napaboJIMYecKOro ypaBHEHHS C HEOrpPaHHYCHHBIMH Kod(duumeHtamu B
TJIaBHOM 4YacTH DBJUIMNTHYECKoro omeparopa. (OcoO0EHHOCTBIO TaHHOTO
YPaBHEHHS SIBISIETCS TO, YTO MAaTPHI[A MOTOKA SBISAETCS KOCOCUMMETPHUIECKOH,

2
a ee kod(puUUMEHTH mpuHAMIEKaT K npocrpaHctBy L° . Tlokasano, uto
NIOCTaBJICHHAs] 3ajada MMEET CIUHCTBEHHOE pEIICHUE, KOTOPOE HEeNb3s

TOTYdHTB, Henonb3ys L anmpoKcHMHUPOBAHHBIX 3aad.
Knrouesvie cnosa: napabonnaeckoe ypaBHEHHE, ONTHMAIBHOS
yIIpaBJIeHHE, TATOIOTHYIECKOe PELICHHE, HEOTPaHNYCHHBIE KOI() (DUIIMEHTHL.
JocmimkeHo 3a1aqy ONTUMAIbHOTO KEPYBAHHS ISl JIIHIHHOTO
napaboTiYHOro PIBHSHHS 3 HEOOMEXKEHUMH KOeilli€eHTAMH B TOJIOBHIN YacTHHI
ennTuaHoro omneparopa. OCOONUBICTh AAHOTO PIBHSHHS TOJSITAE B TOMY, IO
MATPHIL TOTOKY € KOCOCHMETPHYHOK, a 1i Koe(il[ieHTH Haiexarb 10

2 o
npocropy L. TlokazaHo, 0 MOCTAaBICHA 3a[aya KEPyBaHHS Ma€ €IMHUN
PO3B’AI30K, SIKMi HE MOXKHA JOCSATTH Yepe3 TPAHHUII0 ONTUMAIBHUX PO3B’S3KiB

o0
s L anpokcuMoBaHuX 3a1au.
Kniouosi cnosa: mnapabomivuHe piBHSHHS, ONTHMAITbHE
KepyBaHHI, MATOJIOTYHMUIT PO3B’ 30K, HeOOMexeHi KoedillieHTH.

INTRODUCTION
In this paper we deal with the following optimal control problem (OCP) for a

linear elliptic equation with unbounded coefficients in the main part of elliptic
operator

2 2 .
1w =y =val2oruy@ryy b=tz orz ey, = ot (M

subject to the constraints

vy —div(Vy + A(x)Vy) = f in (0,T)xQ, 2)

¥(0,-) =y in Q, 3)

y(-,x)=0 on (0,7)xI'p, M=u on (0,7)xI'y, 4)
5vA
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ueI?(0,T;I*(Ty)) (5)

where u is a control, y, eLZ(O,T; H(l)(Q)) and uy eLZ(O,T; LZ(FN)) ,
f el? (0, T;H _I(Q; I'p)) are given distributions, A4 is a skew-symmetric square

[? -matrix.
The characteristic feature of this problem is the fact that the matrix

ARX)=[g;]; j=1,.. v 1s skew-symmetric, ;(x) =—a;;(x) and belongs to I? -space
(rather than L™). This leads to the existence of elements y e I? 0,7 ;H(l)(Q; I'p))
such that y ¢ L”((0,T)x Q) and

T
lim | [(Vo,, A(x)Vy) sdxdt<0
n—»0 0Q R

where ¢ e C*([0,T];CT(Q))>¢,—> y strongly in L*(0,T;H)(Tp)). As a
result, the existence, uniqueness, and variational properties of the weak solution to
(2)+(4) usually are drastically different from the corresponding properties of
solutions to the parabolic equations with L”-matrices in coefficients. In most
cases, the situation can change dramatically for the matrices 4 with unremovable
singularity. Typically, in such cases, boundary value problem may admit infinitely
many weak solutions which can be divided into two classes: approximable and
non-approximable solutions [1-3]. A function y = y(u) is called an approximable
solution to the initial-boundary value problem in (2)—(4) if it can be attained by
weak solutions to the similar boundary value problems with L™ —approximated
matrix 4. However, this type of solutions does not exhaust all weak solutions to
the above problem. There is another type of weak solutions, which cannot be
approximated by weak solutions of such regularized problems. Usually, such
solutions are called non-variational [2—4], singular [5—7], pathological [8, 9], etc.
The purpose of this work is to consider OCP (1)—(5) with a well prescribed

skew-symmetric [? -matrix A and, using the direct method in the Calculus of
variations, to show that this problem admits a unique solution possessing a special
singular properties. As a result, we prove that this solution cannot be attained
through a sequence of optimal solutions to regularized OCP for boundary value

problem (23)—(24) with skew-symmetric matrices 4 eLOO(Q,S3 )such that

A — A strongly in I’ Q,S 3 ). Thus, this result shows that a numerical analysis

of optimal control problems for parabolic equations with unbounded coefficients is
a non-trivial matter and it requires the elaboration of special approaches.

NOTATION AND PRELIMINARIES

Let Q be the unit ball inR>, Q= {xe R :||x||R3 < 1}. Let Cy (€:Tp) be the
set of all infinitely differentiable functions ¢@:Q — R with compact supports in
Q. Let Cy(%Tp) ={(pe CTRY):9=00n FD}. We define the Banach space

H(l) (€;Tp) as the closure of Cy (€;T) with respect to the norm (see [10])
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1

2
”)’”Hé (@Ip) ~ L{"Vy||§3 dx]

Let H_I(Q; I'p) be the dual space to H(l) (;Ip). Let X be a Banach space
and let 7 >0 be a given value. We denote by I’ (0,T;X) the set of measurable
functions y €(0,7) > X such that ||u()|| v €L0,T). Similarly, one can also

define the set of distributions D'(O,T ;X) on (0,7) with valuesin X . I? (0,T;X)
is a Banach space with respect to the norm

1

2
B2 ror, = [Jnumnidx]
Q

If X is reflexive, the space I? (0,T;X) is reflexive, too. Moreover, if X is
separable, then I’ (0,T; X) is separable. Let C([0,T ];LZ(Q)) be the space of
measurable functions on [0,7]xQ such that y(¢,-) e ? (Q) for any ¢ €[0,7] and

such that the map ¢€[0,T]+— y(t,-)eL2 (Q)) is continuous. Let us define the
Banach space

Wry, = {y 1y e L(0,T: Ho(Q:Tp)), % e *(0.T;H ™ ( FD))}

equipped with the norm of the graph. Here, the derivative 0y /0t is the distribution
in D'(O,T s H _I(Q; I'p)). Then the following properties holds true (see [11, 12]).
Theorem 1. 1) The embedding Wr, < I? 0,7 ;L2 (Q)) is compact.

2) One has the embedding Wr, < C([0,T ];L2 (Q)).

3) Forany u,ve WFD , one has
4 -[u(t, x)v(t,x)dx =
dt a

- <u'(t,-),v(z,-)> +<v'(t,-),u(t,-)>

H™ N @Tp).Hy (@Tp) H @I p). Hy(uTp)

Let ye LZ(O,T;H(I)(Q; I'p)) mC([O,T];LZ (Q)). Then the following density
result holds: there exists ® € C*([0,7];Cy (€;Tp)) such that

|vy-va|,» () S8 V8>0.

Iy =l o2 =3 o132

Skew-symmetric matrices. Let S be the set of all skew-symmetric matrices
A(X)=[afi]l3,i=1’ ie. 4 is a square matrix with a; =—aj and, hence, a; =0.
Therefore, the set S* can be identified with the Euclidean space R3.
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Let [? QS 3 ) be the space of measurable square-integrable functions whose
values are skew-symmetric matrices and it is endowed with the norm

1

Ml 55, = [IIIA(x)IIEsdx]
Q

In what follows, we associate with matrix A e I (Q; 53 ) the bilinear form
o(+,) 4 : 120, T; CH(Q))x I*(0,T; Ch(©)) > R following the rule
T
O(y,v).4 = [ [(Vv, A(x)Vy) 3dxdt, Vy,ve I}(0,T;CH(Q)).
0Q
It is easy to see that this form is unbounded on LZ(O,T ;H(l)(Q)) , since, in
general, the ’integrand’ (Vv, A(x)Vy) 23 is not integrable on (0,7)x€. This
motivates an introduction of the following set. We say that a distribution
ye I? (0,T; H(l) (€%;Tp)) belongs to the set D(A) if
1

T T 2
I I(V(p, A(x)Vy)R3 dxdt| < c(y, A)[-[ J."V(p"ig dxdt] ,
0Q 0Q

for all @ e C*([0,T];Cy (€;Tp)) , with some constant ¢ depending on y and 4.
As a result, having set

T
[7.01= [ [(Vo, A(x)Vy) ,ndxdt, ¥y € D,Vo e C([0,T;C5 () , (6)
0Q

we observe that the bilinear form [y,¢] can be defined for all

Qe I? (0,T; H (1) (%;Ip)) using the standard rule

[v.0]= glggo[y, Pl (7)

where {(pS }8>0 e C*([0,T];Cy (%TpH)) and @, —>¢ converges strongly in
I? (0,T; H(l)(Q; I'p)). In this case the value [y,p] is finite for every y e D(A),
although the ’integrand’ (Vo, A(x)Vy) 23 need not be integrable on (0,7)x€Q), in

general. This fact leads us to the conclusion
[y, y]1 <+, VyeD(4).

At the same time, if we temporary assume that AeLOO(Q;S3 ), then the
bilinear form [y, @] is obviously bounded on I? (0,T; H (1) (;Tp)), i.e. in this case

D(A) = I? 0,7 ;H(l) (4 T'p)) . Indeed, in view of the Bunjakowski inequality, we
get
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T
vl <[] = 53) IV g3 [V 3 xa <
00

< ||A||L°°(Q,S3)"y”L2 (O,T;H(l)(Q;FD))"v"LZ(O,T;H(l)(Q;FD))'
Moreover, if y=v then [y,y]=-[y,y], and, therefore, [y,y]=0 for all
el? 0,7;H ) Q:I'pH)) . However, as it is shown in the next section, there exist
y 0 D

skew-symmetric [? -matrices A4 such that the equality |[ ¥, y]| =[y,y] does not
hold true for some y € D(A).

We define the divergence div A of a skew-symmetric matrix 4 e I’ (Q; 53 )

as a vector-valued distribution d € H ™! (Q; R3) by the following rule
(d; ,(P>H—1(Q) @ = I(GZ,V(P)R3 dx, YoeCy(Q)

where a; stands for the i-th row of the matrix 4. We say that a matrix

Ael? (Q; S3) belongs to the space H (Q; div;S3) if d:=divdel (Q; R3) , that is

H(Q:div;S3) = {A‘A e 12(Q;8%) divd el (Q;R3)}.

MOTIVATING EXAMPLE

Our main intention in this section is to show that for a given positive scalar
value o€ R there exist a skew-symmetric matrix A4 el? (Q; 53 ) and a function
Vg € I? (0,T; H(l) (Q)) such that

Ya €D(4) and [yg,y4]=-0<0

where the bilinear form [ y,v] is defined by (6). We divide our analysis into several

steps.
Step 1. We define a skew-symmetric matrix 4 as follows
0 a(x) 0
Ax)=|—a(x) 0 —b(x) (8)
0 b(x) 0
where a(x) = b(x) = . Since
2l 2||X||R3
2
2 12nnp2 cos’ (psm v )
||a(x)||L2(Q) I dx = I I I siny dy dedp <+,
2« || NS 000 4p*

it follows that a e > (Q) . By analogy, it can be shown that b e ? (Q). Moreover,
it is easy to see that the skew-symmetric matrix 4, we define by (8), satisfies the

property Ae H(Q;div;S3) ,le Ade LZ(Q;S3) and divAe LI(Q;R3) . Indeed, in
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view of the definition of the divergence divA of a skew-symmetric matrix, we

dy
have divA=|d, |, where d; =diva; = xi)jz
d3 X R3
result, we get
12nm| 2
; p f((p,\v)sm(psm\y
||dzvai||L1(Q) =-[ J' J'% i |
000

and a; is 7 -th column of 4. As a

p2 siny dy dedp <+,

for the corresponding f; = f;(¢,y) i=1,2,3. Therefore, divAe b5 (Q;R3 ).

Step 2 deals with the choice of the function y; € ? 0,T; H(l) (Q)). We define

it by the rule

Ya(t,x)= f\/

T
exp| —— —arctan

S2a

31 -

exp(-21))

ﬂxlz +X§ —X1

X2

(- )52

>

for all (z,x)€(0,7)x Q. It is easy to see that

52a

2
X2

0
M

H

a7’ (1—-exp(—2m)) xlz +x

|

52a

7T (1 - exp(—27))

2
2

b
exp| —— —arctan

+x2

sin? pexp(—p/2), Voe[0,2n]

)

ﬂxlz +x§ —X]

X2

with respect to the spherical coordinates. Hence, vy € C ! (0Q), and, as immediately

follows from (9), it provides that

v, € L2(0,T;I(Q)) and y,(1,-)=00n ¢a Vie[0,T].

By direct computations, we get

X

vl
OEIIXIIRs

ot

aVO
0z

1 6v0
el | 2

Hence, there exists a constant C* >0 such that

Thus,

10
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20 |offa st =
(I 8 )~ e |
- g%(l)xlxs - %x2x3

Vx#0.

X

V -
”°[||x||Rs

I

(10)

(11)

*

C

s

<



<+

Vygl,3 <t .
” d”R 1 "x"R3

v(1-blie )

X 5 X
vy| —— + t(l — x> 3 ] Vvg| ———
0[||x||R3 } Il OEIIxIIRg }

S a result, we infer that Vy, € L1 ; , Le. we finally have
A I infer that Vy, e I2(0,T;L*(Q; R?)), i finally h

2 1
Ya € L7(0,T; H ().
Step 3. We show that the function y,, which was introduced before, belongs
to the set D(A). To do so, we have to prove the estimate

<C[ [[IVel 3dxdt]%,

j [(Vo, Ax)Vyy) 3dxd
0Q

for all € C*([0,77;Cy (QY)).
To this end, we make use of the following transformations

T T
II(V(p,AVw) sdxdt == [(div(AVy), (p>H—1(Q) y (Q)dt
0Q 0
T (al)t V\V
=-[ div (a,)' Vv |, dt =
0 (a3)' Vy o |
H™(Q):H ()
T3 a\u r 3 3 2
=-[Z diva;,0— dt+-”ZZ i dxdt =
0i=1 Gxi H_l(Q);H(l)(Q) 0Qi= 1] 1 a 16 j
-0
sin ce Ael? (Q;S3)
T
= I J.(div A,V\V)R3 odxdt
0Q

due to the fact that divA4 eLl(Q;R3 ), which are obviously true for all
v, 9 C*([0,T];Cy (€2)) - Since

T T
-”(div A,V\V)R3 odxdt| = J.-[(V(p,AV\u)R3 dxdt| <
0Q 0Q

< C"A”L2(Q;Sskew)"\V”LZ(O,T;H(I)(Q))’

it follows that, using the continuation principle, we can extend the previous
equality with respect to y to the following one

T T
[ (Vo,AVYy) o3 dxdt = [ [o(div4,Vy,) g3 dxdt, Yo e C¥([0,TLC(Q).  (12)
0Q 0Q

Let us show that (div4,Vy,) ®3 e L”((0,T)x Q). In this case, relation (12)

implies the estimate
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T
[[(Ve.4Vy,) 3 dxdt

< “(div AVYg) H
0Q

¢ dxdt <

T
L% ((0,T)xQ) (I) !2'
T 1/2 (13)
s&(] [IVelay dxdtj :

0Q

for all @ e C*([0,T];Cy () , which means that the element y,; belongs to the set
D(4)).
Indeed, as follows from (11), we have the equality

X X
Vvo[—],—3 =0. (14)
[l 3 €
Thus, the gradient of the function Vvo[ﬁ} is orthogonal to the vector
X[ 53
R
field O = x3 outside the origin. Therefore,
X|| 53
R

(Vv )5 =1 V[(l""‘"R3)”°[||qu3 ﬂ b Fle )~
R R?

=t V(l—xs3j,L XV[L]X_Z_’_
Ml W M

3
x||R3 R

5 X X Xy
1- ] \% , —L+1
+t( [lz3 V0[||x||R3 ||x||§e 3 )2 [ 3 1+1p

where /5, =0 by (14). Since V(l —||x||;3 ] = —5||x||333 X, ﬁ =sin@siny with
R3

respect to the spherical coordinates, and function v is smooth, it follows that there

exists a constant C;>0such that ‘(Vyd,div A)R3 ‘ <y almost everywhere in
(0,T)x Q. Thus,

(div A, Vy, )R3 e L”((0,T)xQ)

and we have obtained the required property.

Step 4. Using results of the previous steps, we show that the function y;
satisfies the condition [v;,y;]=-0<0. Indeed, {p, }s—>0 e C*([0,T1;Cy ()
be a sequence such that

@; — yy strongly in L*(0,T; HY(Q)). (15)
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Then by continuity, we have

T by(12) T
[ya>yal=lim [ [(Voe, AVyg) s drdt = lim [ [@(divA,Vyy) s dxdr.
g—)OOQ g—)OOQ

Since (div A4, Vyd)R3 e L”((0,T)xQ), in view of the property (15), we can

pass to the limit in the right-hand side of this relation. As a result, we get

[Va-Ya] J [va(divA,Vyq) s dxdt =+ j [ (@div 4,Vy3) 3dxdt (16)
0Q OQ

Let Q. = {x € R3‘g < ||x||R3 < 1} and let T = {|x||R3 = s} be the sphere of radius

¢ centered at the origin. Then
T T
[ [(diva, Vyf,)R3dxdz = [ [(@iva.v) y3dH? dr =
00, 0T,

T
= -[ J.(dlv A,V)R3 (1 - "X";3 jvé[ X ]dHZ Zdt =
[l

0| T,

. )
-5 [ (dsz,v)R3v0[" 1 ]dH +o(l) = (17)

e

T3 X X XZ 2[ X ] 2
- )| T v dH ~ + o(1)
5 i [ lelle] e

3
=— 2 I [ ]dH2 +o(l)= -[bo (x)vg (x)a’H2 +0(1)
IIXIIRs S r

S2a
i (1—exp(—2m))

where by =sin@siny and vg = sin* @exp(—@) . Since

2n
J.bovgdHZ 3 >20 [J.sm Qe (pd(p-[sm \ud\u]=6ocT_3>0,
20 nT” (1-exp(—2m)) 0

it remains to combine this result with (16), (17), and relation

T T
-”(dsz Vyd) 3 dxdt = lim I -[(dsz Vyd) 3 dxdt .
00 62000,

As a result, we finally infer [y;, yy]=-0<0.

SETTING OF THE OPTIMAL CONTROL PROBLEM AND ITS PRELIMINARY ANALYSIS

Let Q be the unit ball in R>. We assume that its boundary I' = {|x|| 3= 1} is

divided onto two disjoint parts 0Q=Ip UIy . Let the sets ', and I'y have
positive 2-dimensional measures.
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Let f eLZ(O,T s H _I(Q;FD)) and y, eLZ(Q) be given distributions, let
Ael? QS 3 ) and y; € I’ 0,7 ;H(l) (Q)) be defined by (8) and (9), respectively.
The optimal control problem we consider in this paper is to minimize the
discrepancy (tracking error) between a given distribution y, € I? O, T; H(l) (Q))
and a solution y of the Neumann-Dirichlet boundary value problem for parabolic

equation (2)—(4) by choosing an appropriate boundary control u I? (0,T; I? Ty))

where
oy 3 oy
=> (61J +a (x)) cos(v,x;),
ovy = x]
d;; is the Kronecker’s delta, cos(v,x;) is the 7 -th directing cosine of v, and v is

the outward unit normal vector at ' to the ball Q.

More precisely, we are concerned with OCP (1)—(5). The distinguishing
feature of this problem is the special choice of matrix A and distribution f . As

we will see later on, this entails a number of pathologies with respect to the
standard properties of optimal control problems for parabolic equation. In
particular, this leads to the non-uniqueness of weak solutions to the corresponding
initial boundary value problem and a singular properties of an optimal pair. As a
result, numerical approximation of the solution to OCP (1)—(5) is getting non-
trivial.

To begin with, we introduce the following notion.

Definition 1. We say that (u,y) is an admissible pair to OCP (1)—(5) if

ue (0,7 12(Ty)), yeW,

»(0,-)=yg € I2(Q) almost everywhere in Q, (18)

and the integral identity

T T
[ [yepdxdt + [ [(Vo,Vy + A(x)Vy) o et =
0Q 0Q (19)

2
gf‘PH (QFD)HO(QFD)dt+Irju(de dt
N

holds true for each @ € C*([0,77;Cy (4 Ty)).

We denote by = the set of all admissible pairs for the OCP (1)—(5).

It is worth to note that in view of definition of the space W and Theorem 1,
the condition (18) has a sense. Moreover, as was shown in [13], if (u#,y) is an
admissible pair, then y e D(A).

Definition 2. We say that OCP (1)—(5) is regular if it admits at least one
admissible pair, i.e. 2+ .

We also say that a pair (uo,yo)eLZ(O,T;LZ(FN))xD(A) is optimal for
problem (1)—(5) if
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(uo,yo)eE and I(uo,y0)=( inf _I(u,y).

u,y)ez

As immediately follows from (19) and the definition of bilinear form [y, ]
(see also the extension rule (7)), every admissible pair (u,y) € E is related by the
following energy equality

1 L )
3110 ot bl gy 01
(20)

T T
- I<f’(p>H’1(Q;FD);H(l)(Q;rD)“]t+I I“‘Pdedf-
0 0Ty

However, as was shown in previous section, the value [y, y]is not of constant
sign on D(A). Hence, energy equality (20) does not allow us to derive any priory

estimate for the admissible solutions. In spite of this, the following result proves
that OCP (1)—(5) is well-posed under the special choice of distributions

vq € I*(0,T; H)(Q)), ug € 2(0,T;12(Ty)), yo e X(Q), and
fel’(0,T;H Q).

Theorem 2. Let A e L*(Q;5°) and y, € 2(0,T; H)(Q)) be defined by (8)
and (9), respectively. Assume that yp;=0 in Q and distributions
fe I? (O,T;H_I(Q)) and u, € I? 0,T; I? (T'y)) are given by the rule

S =Wa) —div(Vys + AVyq), (21)
ug =Y, (Va) (22)

where

Yr, (OIS HQTp) = L2 (0.7 H ™2 (Ty)

is the trace operator such that

Y i oy
YIFN ()’)= v, . = ,»,1{:1 (5,]- + a,»j(x))gcos(v,xi)

J

provided y e I?(0,T; HY(:Tp)) N L2(0,T;CH(Q)) .
Then the pair
@°,3%) = (ug,y4) € I*(0,T; L (T )) x D(A)

is a unique solution to OCP (1)—(5).
Proof. As follows from (9), the function y; is smooth near the boundary 0Q

and (yd )t € LZ(O,T;H(I)(Q)). Hence, u, = YIFN (yg) e LZ(FN) and y; €W (see

(10)). Moreover, the inclusion y € D(A) (see estimate (13)) implies:
div(AVy,) e [2(0,T; H™ ' (Q)).
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Therefore, in view of the inclusion (yd)teLz(O,T ;H(l)(Q)), we have
fel?(0,T;H 1 (Q)). Since y,(0,-)=0 in Q and

T T
£ o0ty b urp) = ({ !2 (v ) e +

T T
[ [ V0.V, + AWV pwedxde= | 11, (vg odH dr
00 0Ty

for all @eC”([0,T];Cy’ (%Tp)), it follows that the pair (uy,y,;) satisfies
relations (18)—(19). Thus, (u4,y;) is an admissible solution to OCP (1)—(5) in the
sense of Definition 2. To conclude the proof, it is enough to note that

I(u,y)20 V(u,y)eZ, I(ug,y7)=0,

and the cost functional /:= — R is strictly convex.
ON GAP IN ATTAINABILITY OF AN OPTIMAL PAIR

The question we are going to discuss in this section is about some pathological
properties that can be inherited by optimal pair to the problem, (1)—(5) provided the

skew-symmetric matrix is given by the rule (8). Since A€ I’ (Q; 53 ), it follows
that there exists a sequence of skew-symmetric matrices {Ak }k N eLOo(Q;S3 )

such that 4, — A4 strongly in I’ QS 3 ) . Hence, it is reasonably, from numerical
point of view, to consider the following sequence of constrained minimization
problems associated with matrices Ay, .

< inf Ik(u,y)>,k—>oo. (23)
(u,y)eE
Here,

LG, y)=1(u,y) Y(u,p)e PO, Ty ) x L2O0,T;HY(Tp)), VheN,  (24)

and (u,y)eZ; if and only if

yi -div(Vy+ A Vy)=f in (0,T)xQ,
¥(0,-)=yg in €,

y(-,x)=00n(0,T)xFD,M=u on (0,T)xTy, (25)
aVAk

uel*(0,T;L*(Ty)), ye L*(0,T;HYy(XTp)),
y, € 2(0,T;H (@ Tp)).

Theorem 3. Let uy eI?(0,T;1*(Ty)), fel?(0,T;H ' (Tp)),
Yo € I? (), and y,; € I? (0,T;H (1) (¢;Tp)) be given distributions. Then for every
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ke N there exists a unique minimizer (u,?, y,?)e E; to the corresponding
constrained minimization problem (23) such that the sequence of optimal pairs

{(u,?, y,? )e S }k <y 1s relatively compact with to the product of the weak topologies
on

L(0,T; L2 (Ty ) L (0. H (4 Tp)
and each of its cluster pairs (u*, y*) possesses the properties:

W,y)es, [y,y120. (26)

The proof of this theorem is similar to proof of Proposition 4.1 and
Proposition 4.2 in [13].
Final remarks. As immediately follows from theorem 3, some admissible

pairs (u*, y*) €Z can be attained by optimal solutions to the approximate OCPs
(23). Hence, we can conclude that the original optimal control problem (1)—(5) is

regular for every u, eLZ(O,T;LZ(FN)), feLZ(O,T;H_l(Q;FD)), Yo eLZ(Q) ,
and y, € L*(0,T; H{ (T p)).

The next observation is crucial in our paper and it deals with the inequality
(26),. As Theorem 3 proves, for any approximation {Ak }k <y Of the matrix
Ael? (Q; 53 ) with properties {Ak }k v C L™ (Q; 53 ) and A, —> A strongly in
I’ (Q;S3 ), the optimal solutions to the regularized OCPs (23)—(25) always leads
us in the limit to some admissible solution (u*, y*) of the original OCP (1)—(5).

Moreover, in general, this limit pair can depend on the choice of the approximative
sequence {Ak }k <y - That’s why it is reasonably to call such pairs attainable

admissible solutions to OCP (1)—(5). However, as follows from Theorem 2, the
pair (u*, y*) is not optimal, in general. Indeed, if y;=0 in Q and distributions
fe I? (O,T;H_I(Q)) and u, el? (O,T;L2 (T'y)) are given by the rule (21)—(22),
then (u4,y;)1s a unique optimal pair to OCP (1)—(5). As was shown in previous
section, in this case we have [y;,y;]=—o <0, where o is a given strictly
positive value, whereas [y*, y*]ZO for any attainable pair (u*, y*). Thus, for
given f, yg, Yo, 4y the optimal pair (uo, yo) to OCP (1)—(5) cannot be attained
through any L -approximation of the matrix 4 € I? QS 3 ).

CONCLUSIONS

The given example of the optimal control problem for linear parabolic
equation has an unbounded coefficient such that its unique optimal solution has a
non-variational character. Namely, the shown solutions, which can be attained

through any L™ -approximation of the stream matrix, is not exhaustive for all set of
solutions to the above problem.
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