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Анотація. Наявність залишкових підповерхневих боєприпасів і вибухових речовин (БВР) є серйоз-
ною проблемою в усьому світі. Дискримінація БВР від не БВР-елементів дозволяє спрямовувати 
ресурси на пом'якшення ризиків. Збір фізичних даних і інвертування, моделей, що фізично визнача-
ються,  проводяться з наміром використовувати інвертовані модельні параметри як базис для 
дискримінації БВР. Однак дискримінація БВР через модельну інверсію стикається зі значними 
труднощами в середовищах з шумами, а також при невизначеному місцезнаходженні сенсорів. 
Наш обчислювально-геометричний підхід демонструє можливість отримувати безліч 
інформаційних атрибутів, корисних для БВР-дискримінації, включаючи інформаційний зміст 
інвертованої моделі разом з цінною додатковою інформацією, недоступною при використанні 
інверсного підходу. 
Ключові слова: боєприпаси і вибухові речовини, метод обчислювальної геометрії, техніка інверсії 
фізичної моделі. 
  
Аннотация. Наличие остаточных подповерхностных боеприпасов и взрывчатых веществ (БВВ) 
является серьезной проблемой во всем мире. Дискриминация БВВ от не БВВ-элементов позволяет 
направлять ресурсы на смягчение рисков. Сбор физических данных и инвертирование физически 
определяемых моделей производятся с намерением использовать инвертированные модельные па-
раметры в качестве базиса для дискриминации БВВ. Однако  дискриминация БВВ через модельную 
инверсию сталкивается со значительными трудностями в средах с шумами, а также при неопре-
деленном местоположении сенсоров. Наш вычислительно-геометрический подход демонстрирует 
возможность получать множество информационных атрибутов, полезных для БВВ-
дискриминации, включая информационное содержание инвертированной модели вместе с ценной 
дополнительной информацией, недоступной при использовании инверсного подхода. 
Ключевые слова: боеприпасы и взрывчатые вещества, метод вычислительной геометрии, техни-
ка инверсии физической модели. 
 
Abstract. The presence of subsurface munitions and explosives of concern (MEC) is a significant issue 
worldwide. Discrimination of MEC from non-MEC items enables resources be focused on mitigating risk. 
Geophysical data is collected and physically-based models inverted with the intent that the inverted model 
parameters form the basis for MEC discrimination.  However, MEC discrimination via model inversion 
has significant difficulties in noisy environments and with uncertain sensor location. Our computational 
geometric approach is demonstrated to produce an information-rich set of attributes useful for MEC dis-
crimination including the inverted model information content along with valuable additional information 
not obtainable using the inversion approach.  
Keywords: munitions and explosives of concern, computational geometric method, physics model inver-
sion technique. 
 
1. Introduction 

Solving MEC discrimination decision problems requires an in-depth understanding of the under-
lying science of geophysics. Our overall goal is to demonstrate the enhanced accuracy and per-
formance possible from using machine learning modeling to fuse the information content ob-
tained from MEC feature attributes derived from both data-driven models (using computational 
geometry) and physics-based models. We describe the techniques, and how the machine-learning 
independent information-theoretic approach can be used to assess the contribution from each fea-
ture source (computational geometry or the fitted physics models) in MEC discrimination chal-
lenge. The physics-based governing equations provide the relevant scientific problem space of 
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Fig. 1. Typical MEC and non-MEC items. 

(Image: US Army Environmental Command: 
Standardized Target Specifications:  
Technology Demonstration Sites) 

MEC item responses to geophysical interrogation. Computational geometry provides attributes 
for MEC and non-MEC (i.e. clutter, shrapnel). Hence, a key objective of this work is to merge 
and extend the techniques, effectively fusing both a priori physics-based and automatic modeling-
based components to extend the maximum total discrimination/classification accuracy beyond 
that achievable by either method used independently. A related and equally important objective is 
to quantify the relative value of each component of the information sources in relationship to ac-
curacy. 
 
2. Overview of MEC Discrimination 

MEC discrimination presents one of the toughest and most challenging problems in the genre of 
subsurface identification tasks. A MEC item can, for instance, be unexploded ordnance of various 

sizes and be buried below ground (fig. 1). MEC 
can retain their ability to detonate; they pose a 
continuing risk. The United States Department of 
Defense (DOD) has invested heavily in basic re-
search and development to address this challenge, 
but because typically MEC targets are small and 
surrounded by clutter (e.g., shrapnel or non-MEC 
items), accurate and reliable discrimination has 
been a challenge. Hence, while progress is being 
made, safe, efficient and cost-effective solutions 
have so far proven elusive. 

Initially, MEC discrimination research fo-
cused on two primary approaches to evaluate a 
Target of Interest (TOI): the first, a physics-based 
approach [1], relied on mathematical models whe-

reby model parameters were fitted to field data by solving the inverse modeling problem. A 
second approach, which used machine-learning modeling and multidisciplinary computational 
geometry insights to derive features from the field data, clearly outperformed the other methods 
in use at that time to discriminate MEC from non-MEC [2]. Both approaches are described be-
low. 
 
2.1. Inverse (Fitted) Physics-Based Models 

This section explains the inverse physics-based modeling approach for discriminating MEC items 
using electromagnetic (EMI)-based and magnetic (MAG) instruments. 

One method to investigate the presence of MEC items is by conducting non-destructive 
geophysical surveys. This approach has value only if the resulting information is useable for lo-
cating anomalies and discriminating between MEC and non-MEC items. Since the MEC objects 
are not observable (being primarily below ground), the location, depth, and orientation of the 
MEC item are unknown. These model parameters are solved for by inverse modeling and are 
used to assess whether a TOI is a MEC item or not. 

EMI uses induction theory and leverages the hypothesis that the distributions of the ei-
genvalues of magnetic polarizability provide an understandable basis for MEC versus non-MEC 
discrimination. This hypothesis is based on the observation that a MEC item can be approximated 
by an axisymetric cylindrical (as illustrated on Fig. 1) and, therefore, has only two unique eigen-
values, one that represents the length of the object and the other two that represent the axial 
symmetry. Irregular objects (e.g., clutter), however, exhibit three distinct eigenvalues (that is, dif-
ferent responses in three orthogonal directions). The model of the signal ( )tS  that is generated by 
the EMI equipment is: 
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                             ( ) =tS   ( ) =tB .                                     (1) 

Where t is time, Tr is the sum of the diagonal elements of a matrix (trace), TR is the 
transmit/receive matrix, and ( )tB  is a symmetric-effective polarizability matrix. ( )tS  is computed 
from the convolution of the magnetic polarizability with the transmit waveform. The best-fit ei-
genvalues (β1, β2, β3) correspond to the responses induced when the primary field is aligned with 
the principal axes of the object. A magnetic (MAG) survey response is described by a simple di-
pole model. A tool that provides the best fit estimate for both EMI and MAG data (UX-Analyze) 
has been developed by ESTCP to facilitate these calculations [4]. Fig. 2 illustrates the results of 
an inverse model fit for an anomaly investigated using both the EMI and MAG geophysical tech-
niques. 

This approach provides fitted model parameters that are listed under the “fit results” out-
put summary. There are seven EMI-fitted model parameters, which are then used as inputs for 
machine learning modeling: these are the depth of the object (Depth), its size (Size), the eigenva-
lues (β1, β2, β3), the Coh and the best-fit value (chi2). Inverse physics modeling for the MAG 
sensor provides as outputs depth, size, declination, inclination, solid angle, and the magnetic 
moment. MEC discrimination insight is gained from data collected later in the decay curve which 
captures the anomaly metal thickness. The core concept regarding the EMI inverse model tech-
nique is that the polarizability will have one large (β1) and two small (β2, β3) and equivalent val-
ues to describe the conical MEC-shaped item. MAG relies on the shape and amplitude aspects.  
Hence, both shape (cylindrical versus fragments) and metal thickness (casings versus sheet metal) 
are also useful MEC discrimination information. 

While theoretically sound, significant practical challenges to this method include the need 
to overcome data collection positioning error (requires resolution on the centimeter scale); and 
signal-to-noise ratio (S/N) must be very high, on the order of 100, and non-uniqueness of the ei-
genvalue solutions. The inverse model parameters used in this work were developed by [5]. 

 

  
Fig. 2. Inverse modeling analysis of EMI (left) and MAG (right) for one anomaly using UX-

Analyze. (From fig. 2–7 in [4])  
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Fig. 3. MEC discrimination solution compared to  
results from the JPG Phase IV UXO (MEC)  

Discrimination Project 
 

2.2. Computational Geometric Model 

We first developed and tested the multi-disciplinary, machine-learning approach using computa-
tional geometric modeling techniques in the fall of 2001 on publicly available information and 
data sets for a MEC (then called “UXO” for unexploded ordnance) discrimination from a “prove-
out” site known as the Jefferson Proving Ground – Phase IV. The approach performed far better 
than any technique used at that time [2]. The data used were collected by others using a Protem-
47, time domain geophysical unit that provided 20 time gates of signal S(t) information. The 
compiling genetic programming system (CGPS), a machine-learning technique developed by 

Nordin [6], was used as the classification 
algorithm (we later coined the phrase 
“linear genetic programming” [LGP] to 
differentiate it from other genetic pro-
gramming algorithms). The results of 
this study are summarized in Deschaine 
[2] and are shown in fig. 3. 

Fig. 3 shows the performance of 
the published results from 10 analyses 
conducted by vendors who provided 
MEC discrimination services as part of 
the JPG Phase IV project. The horizontal 
axis shows the performance of each me-
thod in correctly identifying anomalies 
that did not contain buried MEC; whe-

reas the vertical axis shows the performance of each method in correctly identifying anomalies 
that did contain buried MEC. The angled line in the figure represents what could be expected 
from random guessing. 

The difficulties of modeling these data are evident: most methods performed little better 
than random guessing would. Notwithstanding this limitation, the machine-learning based com-
putational geometric approach using the CGPS algorithm still provided the best-known approach 
at the time for correctly identifying MEC and for correctly rejecting non-MEC using various data 
set configurations on blind data [2]. The dashed line from the NAVEA solution in Fig. 3 indicates 
that the data set for the machine-learning algorithm was used. Note that the data we used was 
from a well conducted study, yet the analysis method used by others only produced results 
slightly above average. (We selected this data because of its computational geometric value.) 
Note that we intentionally did not use the data set labeled Geophex, even though it had the best 
performance of the group as analyzed by others, because we concluded that the NAVEA data had 
more information for high accuracy MEC discrimination – the team doing the original analysis 
just were not able to exploit it. The gray dot in the upper right-hand corner of the figure shows the 
CGPS solution on unseen data. Because the number of data points was small, we used a re-
sampling technique to estimate the 95% confidence interval on this solution; the black rectangle 
in Fig. 3 shows that interval. CGPS – combined with computational geometric approach – pro-
duced by far the most accurate discrimination results. 

Since the initial UXO/MEC discrimination success in 2001, we have been assessing the 
challenge of quickly finding targets of interest and then extracting a small, focused set of 
MEC/non-MEC relevant discrimination features for input to machine-learning algorithms and 
production-size data sets. The initial approach we tested was to use genetic programming for au-
tomated feature extraction, but it was unsuccessful in practice. The approach we found that is ro-
bust, practical, flexible, and effective is a multi-disciplinary formulation of computational geome-
try. This approach was inspired by successes in the medical field, but because there are essential-
ly an infinite number of features that can be derived using computational geometry, this approach 
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Fig. 4. Development of computational geometr-
ically derived attributes using a globally  

optimized ellipsoid 

presents a particular challenge for any machine-learning approach, namely that of input attribute 
explosion. For example, the approach used to generate the results cited herein uses a field instru-
ment with four (4) time gates and generated 633 attributes based on raw data, statistical prop-

erties, and insight from the physics-based MEC 
discrimination equations (though not the specif-
ic inputs from inverse physics model fitting). 
The geometric attributes are based on finding 
an optimized ellipsoid that is constructed either 
automatically using the Lipschitz Global Opti-
mization (LGO) technique [8] or by an expert 
geophysicist who draws a polygon around the 
target of interest. To generate the features, the 
ellipsoid is divided into slices and the features 
are computed as a whole geometric shape, with-
in quadrants and within the segmentations. Fig. 
4 illustrates the computational geometric 

process of segregating an ellipsoid fit to field data for attribute derivation. 
Given the prospect that the next generation of geophysical instruments will produce even 

more data and resultant features, the industry would benefit from an efficient and reproducible 
site-specific feature reduction methodology – which is precisely the role the information-theoretic 
approach Minimum Redundancy Maximum Relevance (MRMR) would serve. 
 
3. Attribute Analysis: Computational Geometry and Inverse Physics Models 

Our hypothesis is that when the attributes from computational geometry and fitted inverse phys-
ics-based modeling approach are combined, the resulting model generated with machine learning 
will perform better than – or at least as well as – either approach used alone. We will now test 
this hypothesis first theoretically using information theory, and then empirically, using machine 
learning. 
 
3.1. Mutual Information Analysis 

Understandability of the individual attributes and relationships used for MEC classification anal-
ysis is important for the users of the solution. While the computational geometric approach has 
been shown to be a viable approach, the amount of attributes can make the solution daunting to 
understand. Methods for feature compression such as principal components analysis, while quite 
valuable for reducing the number of inputs in a data set used for machine learning, require com-
plex computations to be performed that combine many attributes into a single input vector. This, 
however, is something that obfuscates solution understandability. In the section below, we de-
scribe and test an approach to reduce the attributes required for MEC discrimination modeling 
using mutual information that offers the additional advantage of preserving the individual 
attribute identity. 

To test the approach on both attribute reduction and relevancy assessment, the data sets 
from the ESTCP Camp Sibert project [3, 5] are combined so they contain attributes from both the 
fitted physics-based model parameters and the computational geometric approach; the MEC iden-
tity is a binary label (1 for MEC, 0 for non-MEC). The data was collected by others as part of the 
project and provided to us for this analysis. The EMI data set consists of 174 instances (rows), of 
which 67 are MEC and 107 are non-MEC. There are seven attributes for the fitted physics-based 
model and 551 for the computational geometric based model. The MAG data set consists of 182 
instances (rows) of which 56 are MEC and 126 are non-MEC. There are six attributes for the fit-
ted physics-based model and 82 for the computational geometric-based model. 
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Information content has long been used for assessing important of attributes for model 
building [10]. The method used here is based on mutual information, using a maximum-
dependency, minimum-redundancy framework as developed by Peng [7]. This technique pro-
vides the necessary theoretical engine to select the best candidate features independent of a ma-
chine-learning classifier. The computations are based on the following model: 

Given two random variables ( )yx, , their mutual information ( )yx,  is defined in terms of 

their marginal and joint probability density functions ( )xp , ( )yp  and ( )yxp , : 

                                                   I .                                                 (2) 

In terms of mutual information, the goal of feature selection is to develop the set S of m 
features { }mixi ...1, =  which jointly have the largest dependency (or in this case relevance) on 

the target class, that is the classification of MEC (aka UXO): 

                                                ( ) =whereDuxoSD ,,max .                                  (3) 

It is likely that using just this formulation will generate a list of features that are redundant 
with respect to one another (i.e., not all are needed for the same discrimination accuracy); hence, 
a feature redundancy protective measure is used via a maximum relevance and minimum redun-
dancy formulation: 
                                                   ( ) == RSRR ,min .                                       (4) 

To optimize D (dependency) and R (redundancy) simultaneously, we can use the objec-
tive function: 

                                                  ( ) RDФRDФ −=,,max .                                                        (5) 

The goal of this “maximum relevance, minimum redundancy” (MRMR) approach [7] is to 
reduce the attribute space. Using a smaller input data set (with the same information content) will 
result in faster running as well as higher accuracy of machine-learned models. We use it to assess 
the relative importance/redundancy between the fitted attributes from the physics models and the 
computational geometry attributes on each of the subsets of the EMI and MAG data. 
 
3.2. Application of MRMR 

The first step in applying MRMR to the feature value quantification for the MEC discrimination 
challenge is preparing the data set. The target of Interest (TOI) is discrete; each case is labeled 
either as a 1 for MEC or as a 0 for not-MEC. However, the computational geometric paradigm 
generates features that are represented as continuous variables. Mutual information of discrete 
variables was used and the variables discritized by using two thresholds: the mean (+/-) al-
pha*standard deviation as discussed in [7]. MRMR is available as open source, as a web-based 
application, C and Matlab code. 

Table 1. Parameter settings for the MRMR algorithm 
MRMR Parameter Parameter Value Used 

Alpha 1.0 
Variable states 3 

Number variables retained 50 
Feature Selection Scheme Mutual Information Difference (MID) 

 



56                                                                                 ISSN 1028-9763. Математичні машини і системи, 2011, № 2 

3.3. MRMR Results 

The MRMR ranking produces a rank-ordered list of features, with the top 50 of the 633 candidate 
EMI features being retained. To understand how to use the MRMR results, consider an example 
of the top three variables, V1, V2 and V3. This ranking means that if a single variable is desired, 
then variable V1 should be used. If two variables are desired, then the combination of V1 and V2 
is better than the combination of V1 and V3, or V2 and V3. The results discussed below indicate 
that information contained by developing a feature data set using the computational geometric 
approach for the EMI data set contains all the information that is contained in the inverse physics 
modeling. However, the results of MRMR analysis on the MAG data set clearly show the syner-
gy possible when both using both methods are used. This finding is reinforced by the empirical 
testing via machine learning, as discussed below. 
 
3.4. Investigation of MRMR Results 
Since the MRMR analysis resulted in minimal to no selection of the inverse physics model 
attributes, and these very attributes are what the industry relies on for MEC discrimination, analy-
sis was conducted to further understand this finding.  
 
3.4.1. EMI MRMR Results Analysis 

Analysis of the EMI data revealed that the only fitted physics-derived variable in the top 50 rank-
ordered set was “Chi2,” which was ranked 45th out of 50 for variable importance. Forty-nine (49) 
of the features in the top 50 were computational geometric (CG) features. The eigenvalue 
attributes as described by the inverse physics modeling (β1, β2, β3) – did not appear in the list of 
top 50 features. Table 2 shows an abbreviated list of features output by the MRMR code.  

Table 2. Abbreviated output of MRMR analysis of the EMI data 
Feature (attribute) Ranking Feature (attribute) 

#1 CG-500 
#2 CG-485 
#3 CG-335 
… … 
#45 Chi2 

To investigate why the eigenvalue attributes were not ranked with higher priority, we 
tested whether or not the computational geometric attributes and the eigenvalues were informa-
tion content redundant. The results of our analysis show that they are, in fact, redundant. To as-
sess to the extent of the redundancy, we developed a function using a common set of eight 
attributes from the computational geometric data set that explains more than 99% of the variation 
in each of the eigenvalues β1, β2, β3. Hence, the features developed as part of the computational 
geometric attribute formulation contain all the information that the eigenvalues have to offer. 
This is demonstrated via a regression analysis using Multivariate Adaptive Regression Splines 
(MARS) with 10 times cross-validation [9]. Thus, the need to develop attributes by fitting physics 
models to the field data is unnecessary, at least in this example. Since the computational geome-
tric approach performs at lower S/N than the inverse physics modeling (10 vs. 100, respectively), 
more TOI can be discriminated using this method. Moreover, the features that form the inputs to 
the regression models are those that one would expect such as peak values, ratios between the 
channels and parameters of power law fits. The results of the computational geometric attribute 
data set’s ability to reproduce all of the fitted physics-based derived attributes are shown in Table 
3: R2 denotes the correlation coefficient.  
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Table 3. Reproducibility of inversion physics-based EMI features using CG-EMI features 
Physics-based parameters obtained by inver-

sion 
R2 obtained using 10 times cross-validation 

β1 0,99313 
β2 0,99315 
β3 0,99320 

Chi2 0,89701 
Size 0,98115 

Depth 0,99367 
Coh 0,76570 

In hindsight, it is not surprising that the computational geometric approach includes all of 
the information that could be available by fitting physics models to the data. After all, we devel-
oped the computational geometric model with the discrimination physics in mind. However, this 
is the first formal analysis that indicates that this information inclusivity is indeed the case. 
Moreover, these results show that the computational geometric approach can be used to develop a 
physics-based representation from the EMI Data. Interestingly, the one (Chi2 a measure of fitness 
of the inverse fitted-physics model) attribute that did appear in the top 50 features is a solid indi-
cator of how well the inverse physics model is expected to fit the data. It is also important to note 
that the computation geometric approach was able capture 89,7% of the variation in the expected 
fitness of the inverse modeling. This ability to predict a priori how an inverse modeling task 
should perform is extremely valuable for quality assurance/quality control purposes. 
 
3.4.2. MAG MRMR Results Analysis  

Analysis of the MAG data revealed three of the physics-derived variables in the top 50 of the 
rank-ordered set; these are Fit_size (rank #1), Fit_inc ( rank #6), and Fit_Depth (rank #48). The 
remaining 47 of the features in the top 50 were computational geometric attributes. A test of the 
ability to produce the fitted physics-based attributes from the computational geometric attributes 
was conducted, this time with very different results as shown in Table 4. 

Table 4. Reproducibility of fitted physics-based MAG features using computational geometric 
MAG attributes 

Physics-based parameters obtained by inver-
sion (# is the parameter ranking) 

R2 obtained using 10 times cross-validation 

Depth (#48) 0,67 
Size (#1) 0,73 

Dec 0,21 
Inc (#6) 0,49 

Solid Angle 0,30 
Magnetic Moment 0,49 

Clearly, the less well-developed computational geometric approach for MAG sensors is 
currently not as effective as the EMI approach in capturing the information content from the fit-
ted physics-based inversion model; therefore, further work in this area is warranted. 
 
3.5. MRMR Analysis Summary 

This MRMR approach is particularly valuable because it provides gives the ability to screen im-
portant features and reject ones of lesser value or that are redundant to making classification pre-
dictions without the need to run classification algorithms. This means that important variables can 
be identified in minutes as opposed to hours or days of simulation computation time. Thus the 
benefits associated with the machine-learning, algorithm-independent analysis of feature contri-
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bution made possible with the MRMR approach are multifold. Not only is it fast and cost-
efficient, it guides when easily computed data-driven features should replace more complex ones 
to obtain features such as those arrived at via fitted physics-based inversion. Additionally, it pro-
vides a very fast and efficient screening mechanism to rank the value of new or proposed fea-
tures, especially when compared to existing features sets. Additionally, these characteristics of 
the information-theoretic MRMR approach, when corroborated with results from machine-
learning algorithms, effectively streamline the understanding of attribute importance and help to 
focus new research into less well-understood areas. This benefit is discussed in more detail be-
low. 
 
4. Machine Learning Analysis and Results 

Machine-learning (ML) techniques are tools that interrogate the information content in the data 
set and then replace that content with a representative relation(s). That representation can then be 
used to make predictions relative to unseen instances: in this case sensor data returned from a 
geophysical investigation.  

Based on the information-theoretic MRMR analysis outlined and demonstrated above, we 
can anticipate and expect certain outcomes when building models from the data sets using ma-
chine-learning algorithms and various combinations of attributes. For example, models produced 
using the EMI data set should rank as: 

• Best: Combined Geometric and Fitted Model attributes; 
• Second: Geometric attributes, and; 
• Third: Fitted physics-attributes. 
This ranking reflects the fact that the computational geometric approach replicated the in-

formation content in the inverted fitted physics models. The machine-learned model based on the 
combined geometric-fitted physics attribute data may be slightly better (or tie with) the geometric 
attribute model, since only one physics attribute appeared in the top 50 features (the measure of 
the inverse physics model fitness) and then at a very low rank (#45). The data based on the fitted 
physics models will rank as third accurate, to the extent that it does not contain the information 
content that the geometric data set provides.  

Models produced using the MAG data set are a different story. Clearly, the geometric 
attributes present valuable information, as do the fitted physics-inversion attributes. One can only 
conclude, therefore, that the combined CG-physics data set will produce a more accurate model 
than either data or physics alone. 
 
4.1. Empirical Testing using Machine Learning 

The models were constructed from the EMI and MAG data sets (fitted physics, geometric, geo-
metric-fitted physics). All models were developed using 10 times cross-validation, and all used 
the designated technique subset (not just the subset of the top 50 features identified above). The 
tool used was TreeNET [9] and used with default settings, except the number of trees was set to 
2,000. 
 
4.1.1. EMI Machine Learning Results 

The model results using the EMI inverse physics model data set is provided in fig. 5 and show 
respectable MEC discrimination (ROC>0,95). A receiver operating characteristic (ROC) Chart is 
one that plots the accuracy of a classifier over the data set; true positive rate of detection on the y-
axis and the false positive rate on the x-axis. The area under ROC curve (AUC) is used as a 
measure of quality of a probabilistic classifier, with an area of 1.0 being best achievable, and 0.50 
(blue line) being no better than random guessing. The graph shows the order of MEC removal, 
progressing from left to right, with the final excavation occurring at the right-most section of the 
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graph. The last remaining MEC item is removed when the value of the y-axis is 1.0. For MEC 
removal projects, additional MEC would be removed beyond the last known MEC item as a 
means of validation and stakeholder acceptance. 
 

 

Fig. 5. EMI: Inverse Physics 
Model, ROC (AUC) =0,98786 

 

 

Fig. 6. EMI: Computational 
Geometry,  

ROC (AUC) =0,99609 

 

 
Fig. 7. MAG: Inverse Physics 
Model, ROC (AUC) =0,96358 

 

 
Fig. 8. MAG: Computational 

Geometry, 
ROC (AUC) =0,95366 

 

  

Fig. 9. EMI: Computational 
Geometry and Inverse Physics 

Model, 
ROC (Are AUC)=0,99623 

Fig. 10. MAG: Computation-
al Geometry and Inverse 

Physics Model,  
ROC (AUC) =0,97251 

rated additional information essential for higher accuracy MEC classification. The combined 
geometric-fitted physics model slightly outperformed the geometric-only model; this model in-
cluded the fitness of the inverse model to the data.  

in fig. 8 also show respectable 
MEC discrimination (ROC > 
0,95), but with a slightly worse 
curve indicating slower identifica-
tion of the final MEC item. 
 
4.1.3. Combined EMI and MAG 
Analysis 

EMI: The model results using the 
EMI-geometric and inverse phys-
ics  model data  set provided in fig. 

The model results using the 
EMI geometric data set (provided 
in fig. 6) also show respectable 
MEC discrimination (ROC > 0,95) 
with a much better time/speed 
curve for identifying MEC. 
 
4.1.2. MAG Machine-Learning 
Results 

The model results using the MAG 
fitted physics data set, provided in 
fig. 7, show respectable MEC dis-
crimination (ROC > 0,95). 

The model results using the 
MAG geometric data set provided 

9 also show respectable MEC dis-
crimination (ROC>0,95), again 
with a slightly better curve show-
ing faster classification of MEC 
signals. The expectation of the 
classifier performance is in con-
cert with the understanding 
gained from the information-
theoretic MRMR analysis. The 
computational geometric model 
performed better than the inverse 
physics model, because it repli-
cated basically all the important 
the information content of the fit-
ted physics model and also gene- 
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Fig. 11. Machine learning over-fitting test using a 
Monte-Carlo target (aka label) column scrambling 

MAG: The model results using the MAG geometric and inverse physics model data set 
(shown in fig. 10) also demonstrate respectable MEC discrimination (ROC>0,95), with a higher 
AUC ROC value with a slightly better curve, but again indicate slower identification of the final 
MEC found. The expectations of the classifier performance are in concert with the information-
theoretic MRMR analysis in terms of overall performance (a higher AUC ROC value was ob-
tained using the combined data-physics data sets). However, the overall identification of that last 
MEC was slower; hence this solution would require more holes to be dug (and non-MEC items 
excavated) than the other ones. These mixed results are indicative of a less than fully developed 
MAG data and inverse-physics model. 
 
5. Over-Fitting Test 

In machine learning, over-fitting (also known as “memorizing”) is an important issue with respect 
to assuring predictable performance on unseen data. Being able to predict how an algorithm will 
do on unseen data is more important than the algorithm doing well on training data. To guard 
against over-fitting, large data sets are divided into training, testing, and/or validation subsets 
(where the model’s performance is solely judged on the validation performance statistics) or as in 
our case, into a larger number of smaller data sets where a 10 times cross-validation approach 

could be used. 
The method used in this study to test 

for over-fitting is to scramble the target col-
umns of the EMI-geometric attribute data set 
using a Monte Carlo method. The target vari-
able (MEC or non-MEC) is solved once; then 
the target column is scrambled 99 times (for a 
total of 100 runs) using the exact same para-
meter settings and a machine-learning model 
is then again built. If there is a structural flaw 
in the experiment, it will show up. Specifical-
ly, if the accuracy of the solutions developed 
with the Monte Carlo-scrambled (randomized 
labels) targets are similar to the true target 

sequencing; this is not a good result. This technique provides qa/qc check and safe-guards against 
deploying models that, while they may look good in testing phase, they are but mere chance find-
ings and fitting noise – likely to perform poorly upon deployment. As shown in fig. 11, the true 
solution (AUC=0,997) exceeds both the average (AUC=0,556, STDEV=0,054) and maximum 
(AUC=0,737) of the Monte Carlo over-fitting test. Our conclusion is that the modeling approach 
is valid, the model is identifying a signal (not just fitting noise); therefore, the results are expected 
to be reasonably reliable for their intended purpose. 
 
6. Summary and Results 

We demonstrate the value and understandability of the computational geometric MEC discrimi-
nation method, and developed a methodology for understanding the value of MEC features by 
applying information theory. We used machine learning to fuse the information content of 
attributes derived from both machine-learning computational geometric and from fitted physics-
based models. 

The authors believe that the inverse physics modeling, while providing great insight, over 
compresses the information available in the geophysical signals into too few variables and hence 
impose an artificial limit on that methods accuracy. The multi-disciplinary computational geome-
tric (MDCG) is intended to extend – not replace-this deep physics-based understanding by sup-
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plementing the discrimination information with factors the inverse physics modeling approach 
cannot capture. For the test case, the MDCG approach was found to contain all the information 
(in eight common variables) contained in the EMI data set, but not the MAG data set. 

The empirical tests conducted using machine-learning are consistent with their perfor-
mance predicted using information theory. We further identified the information overlap between 
our computational geometric approach and the fitted physics model approach by others: complete 
overlap for the EMI sensor – indicating a rational physical basis for the method – and a partial 
overlap for the MAG sensors. 
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