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A COMPUTATIONAL GEOMETRIC / INFORMATION THEORETIC METHOD TO
INVERT PHYSICS-BASED MEC MODELS ATTRIBUTES FOR MEC DISCRIMINA-
TION

Anomauin. Hasenicmo 3amuwxosux nionosepxuesux 6oenpunacie i eudyxosux pevosur (bBP) ¢ cepiios-
HOI0 npobaemoto 6 ycoomy ceimi. JJuckpuminayis BBP 6i0 ne BBP-enemenmis 003605€ cnpsamogyeamiu
pecypcu Ha nom'saKuenHs pusuxie. 30ip izuunux oanux i ineepmyBants, mooenell, wo PizuuHo susHa4a-
0MbCs, NPOBOOSAMbCA 3 HAMIPOM BUKOPUCTOBY8AMU [HBEPMOBAHI MOOENbHI napamempu AK 6a3uc ons
ouckpuminayii BBP. Oonak ouckpuminayis BBP uepe3 mooenvry iHeepcilo cmukaemscs 3i 3HAYHUMU
MpPYyOHOWAMU 8 CepedOsUAX 3 WYMAMU, A MAKONC NPU HEBUZHAYEHOMY MICYE3HAXOO0NHCEHHI CEeHCOpIs.
Haw  obuucniosanvro-eceomempuunuii  nioxio  0eMOHCMPYE — MOJICIUBICMb — ompumyeamu  Oes3uniu
inopmayitinux ampubymis, xopucHux 0as bBP-ouckpuminayii, exmouaiouu ingopmayiinui smicm
iHgepmMOoBanoOi MoOeni pazom 3 YIHHOW O000AMKOB80 IHGOpMAYIcto, HEOOCMYNHOK NPU BUKOPUCTHAHHIE
iHBEPCHO20 NiIOX00Y.

Kniouosi cnosa. boenpunacu i 6ubyxo6i peyoguHu, Memoo 0OUUCTIOBANbHOL 2eoMempii, mexHiKa iHeepcii
Qizuunoi moodeii.

Annomauyusn. Haruuue ocmamoyunvix noOn0SEPXHOCMHbIX Ooenpunacos u e3pviguamulx éeuwecme (bBB)
ABNAEMCS CePbe3Holl npodemoll 60 ecem mupe. Juckpumunayusi BBB om ne bBB-snemenmos noszseonsiem
Hanpasusims pecypcvl Ha cmsacyenue puckos. Coop usuueckux OaHHBIX U UHBEPMUPOBAHUE PuU3UYECKU
onpeodensemblx MOOeell NPOU3800AMC ¢ HAMEPEHUEM UCHOIb308AMb UHBEPIMUPOBANHbIE MOOeTbHble Nd-
pamempyl 8 Kauecmae 6azuca 01 ouckpumunayuu BBB. Oonako ouckpumunayus BBB uepe3 mooenvuyio
UHBEPCUIO CIATKUBAETNCS CO 3HAYUMENbHBIMU MPYOHOCHAMU 8 CPEOax ¢ UyMamil, a maxoice npu Heonpe-
OeNleHHOM MeCTONON0MNCeHUU ceHcopos. Haw sviuuciumenvho-eeomempuseckuii HOOX00 0eMOHCIMpUpyem
603MOJICHOCTL — NOJYYAMb  MHOJICECMBO  UHMOPMAYUOHHBIX — ampudymosg, nonezuvix 0asi  HBBB-
OUCKPUMUHAYUU, 6KTIOYUAST UHDOPMAYUOHHOE cOOepIcane UHEEPMUPOBAHHOU MOOeU GMecme ¢ YeHHO
00NOIHUMENbHOU UHDOPpMayueli, HeOOCMYNHOU NPU UCNOJIL30BAHUU UHBEPCHO20 NOOX00A.

Knwouesvie cnosa. boenpunacul u 63pvluamsie 8eecmsed, Memoo GbIYUCTUMENbHOU 2eOMempUll, MexHu-
Ka UHepCcUU QuauyecKol Mooeu.

Abstract. The presence of subsurface munitions and explosivesncern (MEC) is a significant issue
worldwide. Discrimination of MEC from non-MEC itemsables resources be focused on mitigating risk.
Geophysical data is collected and physically-basedlels inverted with the intent that the invertextiel
parameters form the basis for MEC discriminatiddiowever, MEC discrimination via model inversion
has significant difficulties in noisy environmeratsd with uncertain sensor location. Our computadion
geometric approach is demonstrated to produce &rnmation-rich set of attributes useful for MEC -dis
crimination including the inverted model informatioontent along with valuable additional informatio
not obtainable using the inversion approach.

Keywords: munitions and explosives of concern, computatigegimetric method, physics model inver-
sion technique.

1. Introduction

Solving MEC discrimination decision problems regsian in-depth understanding of the under-
lying science of geophysics. Our overall goal islemonstrate the enhanced accuracy and per-
formance possible from using machine learning mnodeifo fuse the information content ob-
tained from MEC feature attributes derived fromhbdata-driven models (using computational
geometry) and physics-based models. We describiethaiques, and how the machine-learning
independent information-theoretic approach candsel wo assess the contribution from each fea-
ture source (computational geometry or the fittegiscs models) in MEC discrimination chal-
lenge. The physics-based governing equations peotrid relevant scientific problem space of
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MEC item responses to geophysical interrogatiorm@Quational geometry provides attributes
for MEC and non-MEC (i.e. clutter, shrapnel). Henaeey objective of this work is to merge

and extend the techniques, effectively fusing l@ofriori physics-based and automatic modeling-
based components to extend the maximum total dhgtation/classification accuracy beyond

that achievable by either method used independehtiglated and equally important objective is
to quantify the relative value of each componenthefinformation sources in relationship to ac-
curacy.

2. Overview of MEC Discrimination

MEC discrimination presents one of the toughestmodt challenging problems in the genre of
subsurface identification tasks. A MEC item cam,ifistance, be unexploded ordnance of various
sizes and be buried below ground (fig. 1). MEC
can retain their ability to detonate; they pose a
continuing risk. The United States Department of
Defense (DOD) has invested heavily in basic re-
search and development to address this challenge,
but because typically MEC targets are small and
surrounded by clutter (e.g., shrapnel or non-MEC
items), accurate and reliable discrimination has
been a challenge. Hence, while progress is being

|!L Y. Bl made, safe, efficient and cost-effective solutions
2 il have so far proven elusive.
Fig. 1. Typical MEC and non-MEC items. Initially, MEC discrimination research fo-

(Image: US Army Environmental Command: cysed on two primary approaches to evaluate a

Standardized Target Specifications:  Target of Interest (TOI): the first, a physics-tise

Technoogy Demonstration Site approach [1], relied on mathematical models whe-
reby model parameters were fitted to field datasbiving the inverse modeling problem. A
second approach, which used machine-learning mmadelnd multidisciplinary computational
geometry insights to derive features from the figdda, clearly outperformed the other methods
in use at that time to discriminate MEC from non-®R2]. Both approaches are described be-
low.

2.1. Inverse (Fitted) Physics-Based M odels

This section explains the inverse physics-basedetimalapproach for discriminating MEC items
using electromagnetic (EMI)-based and magnetic (MAGtruments.

One method to investigate the presence of MEC iteniyy conducting non-destructive
geophysical surveys. This approach has value driheiresulting information is useable for lo-
cating anomalies and discriminating between MEC rmoatMEC items. Since the MEC objects
are not observable (being primarily below grourttlg location, depth, and orientation of the
MEC item are unknown. These model parameters dweddor by inverse modeling and are
used to assess whether a TOI is a MEC item or not.

EMI uses induction theory and leverages the hymighihat the distributions of the ei-
genvalues of magnetic polarizability provide an ensttndable basis for MEC versus non-MEC
discrimination. This hypothesis is based on theeplaion that a MEC item can be approximated
by an axisymetric cylindrical (as illustrated orgFi) and, therefore, has only two unique eigen-
values, one that represents the length of the plajed the other two that represent the axial
symmetry. Irregular objects (e.qg., clutter), howeexhibit three distinct eigenvalues (that is; dif
ferent responses in three orthogonal directionis¢ model of the signaﬂs(t) that is generated by

the EMI equipment is:
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(1)

, p11(t) - b13(t)
S{t) = =-Tr{TR - B(1)}; ():[ : : ]

b3'l:(t} - b33@)

Where t is time, Tr is the sum of the diagonal eeta of a matrix (trace), TR is the
transmit/receive matrix, anB(t) is a symmetric-effective polarizability matrigl(t) is computed

from the convolution of the magnetic polarizabiiyth the transmit waveform. The best-fit ei-
genvaluesf{1, B2, B3) correspond to the responses induced when theapyifield is aligned with
the principal axes of the object. A magnetic (MASByvey response is described by a simple di-
pole model. A tool that provides the best fit estienfor both EMI and MAG data (UX-Analyze)
has been developed by ESTCP to facilitate thesmiledions [4]. Fig. 2 illustrates the results of
an inverse model fit for an anomaly investigateagi$oth the EMI and MAG geophysical tech-
nigues.

This approach provides fitted model parameters dhatisted under the “fit results” out-
put summary. There are seven EMI-fitted model patars, which are then used as inputs for
machine learning modeling: these are the depthebbject (Depth), its size (Size), the eigenva-
lues @1, B2, B3), the Coh and the best-fit value (chi2). Invesbgsics modeling for the MAG
sensor provides as outputs depth, size, declinatmmhination, solid angle, and the magnetic
moment. MEC discrimination insight is gained froatalcollected later in the decay curve which
captures the anomaly metal thickness. The coreepanegarding the EMI inverse model tech-
nique is that the polarizability will have one lar1) and two smallf2, B3) and equivalent val-
ues to describe the conical MEC-shaped item. MA@gen the shape and amplitude aspects.
Hence, both shape (cylindrical versus fragmentd)raatal thickness (casings versus sheet metal)
are also useful MEC discrimination information.

While theoretically sound, significant practicalatlenges to this method include the need
to overcome data collection positioning error (ieggi resolution on the centimeter scale); and
signal-to-noise ratio (S/N) must be very high, ba brder of 100, and non-uniqueness of the ei-
genvalue solutions. The inverse model parameted asthis work were developed by [5].
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Fig. 2. Inverse modeling analysis of EMI (left) addG (right) for one anomaly using UX-
Analyze. (From fig. 2—7 in [4])
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2.2. Computational Geometric Model

We first developed and tested the multi-disciplfnanachine-learning approach using computa-
tional geometric modeling techniques in the fall2001 on publicly available information and
data sets for a MEC (then called “UXO” for unexpddordnance) discrimination from a “prove-
out” site known as the Jefferson Proving Grounchade IV. The approach performed far better
than any technique used at that time [2]. The da&l were collected by others using a Protem-
47, time domain geophysical unit that provided @fet gates of signal S(t) information. The
compiling genetic programming system (CGPS), a mma&elearning technique developed by
Nordin [6], was used as the classification

algorithm (we later coined the phrase
“linear genetic programming” [LGP] to
N differentiate it from other genetic pro-
o ben s S gramming algorithms). The results of
— this study are summarized in Deschaine
o [2] and are shown in fig. 3.
e Fig. 3 shows the performance of
the published results from 10 analyses
= = & % = =« = = = conducted by vendors who provided
Percent of Gomect Non-Uxo Blscriminated [Better Tools =1 MEC discrimination services as part of
the JPG Phase IV project. The horizontal
Fig. 3. MEC discrimination solution compared to  gyis shows the performance of each me-
results from the JPG Phase IV UXO (MEC) 1144 in correctly identifying anomalies
Discrimination Project that did not contain buried MEC; whe-
reas the vertical axis shows the performance df @aethod in correctly identifying anomalies
that did contain buried MEC. The angled line in flgure represents what could be expected
from random guessing.

The difficulties of modeling these data are evidembst methods performed little better
than random guessing would. Notwithstanding tmstation, the machine-learning based com-
putational geometric approach using the CGPS dhgorstill provided the best-known approach
at the time for correctly identifying MEC and faoreectly rejecting non-MEC using various data
set configurations on blind data [2]. The dashed from the NAVEA solution in Fig. 3 indicates
that the data set for the machine-learning algorithas used. Note that the data we used was
from a well conducted study, yet the analysis mgthsed by others only produced results
slightly above average. (We selected this datausecaf its computational geometric value.)
Note that we intentionally did not use the datalakéled Geophex, even though it had the best
performance of the group as analyzed by othergusecwe concluded that the NAVEA data had
more information for high accuracy MEC discrimimaiti— the team doing the original analysis
just were not able to exploit it. The gray dothe upper right-hand corner of the figure shows the
CGPS solution on unseen data. Because the numbaatafpoints was small, we used a re-
sampling technique to estimate the 95% confidentarval on this solution; the black rectangle
in Fig. 3 shows that interval. CGPS — combined witmputational geometric approach — pro-
duced by far the most accurate discrimination tssul

Since the initial UXO/MEC discrimination successZ@01, we have been assessing the
challenge of quickly finding targets of interestdathen extracting a small, focused set of
MEC/non-MEC relevant discrimination features fopum to machine-learning algorithms and
production-size data sets. The initial approachegéed was to use genetic programming for au-
tomated feature extraction, but it was unsuccessfptactice. The approach we found that is ro-
bust, practical, flexible, and effective is a mudlisciplinary formulation of computational geome-
try. This approach was inspired by successes imidical field, but because there are essential-
ly an infinite number of features that can be dedliyusing computational geometry, this approach
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presents a particular challenge for any machinetieg approach, namely that of input attribute
explosion. For example, the approach used to gentra results cited herein uses a field instru-
ment with four (4) time gates and generated 63%bates based on raw data, statistical prop-
erties, and insight from the physics-based MEC
discrimination equations (though not the specif-
ic inputs from inverse physics model fitting).
The geometric attributes are based on finding
kit an optimized ellipsoid that is constructed either
~ e automatically using the Lipschitz Global Opti-
) _ mization (LGO) technique [8] or by an expert
- e geophysicist who draws a polygon around the
” target of interest. To generate the features, the
Fig. 4. Development of computational geometr-€llipsoid is divided into slices and the features
ically derived attributes using a globally ~ are computed as a whole geometric shape, with-
optimizedellipsoic in quadrants and within the segmentations. Fig.
4 illustrates the computational geometric
process of segregating an ellipsoid fit to fieldedf@r attribute derivation.

Given the prospect that the next generation of gsipal instruments will produce even
more data and resultant features, the industry dvbehefit from an efficient and reproducible
site-specific feature reduction methodology — whecprecisely the role the information-theoretic
approach Minimum Redundancy Maximum Relevance (MRMBuld serve.

Lol
[ =
F
e
e

3. Attribute Analysis. Computational Geometry and I nver se Physics Models

Our hypothesis is that when the attributes from patational geometry and fitted inverse phys-
ics-based modeling approach are combined, thetireguhodel generated with machine learning
will perform better than — or at least as well asither approach used alone. We will now test
this hypothesis first theoretically using infornmatitheory, and then empirically, using machine

learning.

3.1. Mutual Information Analysis

Understandability of the individual attributes amethtionships used for MEC classification anal-
ysis is important for the users of the solution. iM/ithe computational geometric approach has
been shown to be a viable approach, the amountrdfiaes can make the solution daunting to
understand. Methods for feature compression sugriasipal components analysis, while quite
valuable for reducing the number of inputs in aadsdt used for machine learning, require com-
plex computations to be performed that combine natnbutes into a single input vector. This,
however, is something that obfuscates solution kstaledability. In the section below, we de-
scribe and test an approach to reduce the attalnetguired for MEC discrimination modeling
using mutual information that offers the additiormdvantage of preserving the individual
attribute identity.

To test the approach on both attribute reductich retevancy assessment, the data sets
from the ESTCP Camp Sibert project [3, 5] are carabliso they contain attributes from both the
fitted physics-based model parameters and the ctatiuoal geometric approach; the MEC iden-
tity is a binary label (1 for MEC, 0 for non-MEC)he data was collected by others as part of the
project and provided to us for this analysis. T Bata set consists of 174 instances (rows), of
which 67 are MEC and 107 are non-MEC. There arersettributes for the fitted physics-based
model and 551 for the computational geometric basedel. The MAG data set consists of 182
instances (rows) of which 56 are MEC and 126 areM&C. There are six attributes for the fit-
ted physics-based model and 82 for the computdtgeametric-based model.

54 ISSN 1028-9763atemarnuni Mamumau i cuctemu, 2011, Ne 2



Information content has long been used for assgseiportant of attributes for model
building [10]. The method used here is based onualuinformation, using a maximum-
dependency, minimum-redundancy framework as deeeldpy Peng [7]. This technique pro-
vides the necessary theoretical engine to selecbdéist candidate features independent of a ma-
chine-learning classifier. The computations areetdam the following model:

Given two random variablef, y), their mutual informatior(x, y) is defined in terms of

their marginal and joint probability density furartis p(x), p(y) and p(x, y):

_ plagy)
1Goy) = J] pleoy)log—== dxdy. 2)(

In terms of mutual information, the goal of featsedection is to develop the set S of m
features{)g, [ =1...m} which jointly have the largest dependency (oihis tase relevance) on
the target class, that is the classification of Maka UXO):

maxD(S, uxo), whereD= %E,ﬁ;{xg uxo). 3)

It is likely that using just this formulation wiflenerate a list of features that are redundant
with respect to one another (i.e., not all are ededr the same discrimination accuracy); hence,
a feature redundancy protective measure is used maximum relevance and minimum redun-
dancy formulation:

R=minR(S), R=L %, s/xxj. (4)

To optimize D (dependency) and R (redundancy) senebusly, we can use the objec-
tive function:

max®(D,R), @ =D -R. (5)

The goal of this “maximum relevance, minimum redamcl” (MRMR) approach [7] is to
reduce the attribute space. Using a smaller inpta get (with the same information content) will
result in faster running as well as higher accu@ayachine-learned models. We use it to assess
the relative importance/redundancy between thedfi#tttributes from the physics models and the
computational geometry attributes on each of ttseis of the EMI and MAG data.

3.2. Application of MRMR

The first step in applying MRMR to the feature valyuantification for the MEC discrimination
challenge is preparing the data set. The targéttefest (TOI) is discrete; each case is labeled
either as a 1 for MEC or as a O for not-MEC. Howetlee computational geometric paradigm
generates features that are represented as camdinamiables. Mutual information of discrete
variables was used and the variables discritizedudigg two thresholds: the mean (+/-) al-
pha*standard deviation as discussed in [7]. MRMRviailable as open source, as a web-based
application, C and Matlab code.

Table 1. Parameter settings for the MRMR algorithm

MRMR Parameter Parameter Value Used
Alpha 1.0
Variable states 3
Number variables retained 50
Feature Selection Scheme Mutual Information Diffiees(MID)
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3.3. MRMR Results

The MRMR ranking produces a rank-ordered list atdiees, with the top 50 of the 633 candidate
EMI features being retained. To understand howst the MRMR results, consider an example
of the top three variables, V1, V2 and V3. Thiskiag means that if a single variable is desired,
then variable V1 should be used. If two variablesdesired, then the combination of V1 and V2
is better than the combination of V1 and V3, orafl V3. The results discussed below indicate
that information contained by developing a featda¢a set using the computational geometric
approach for the EMI data set contains all thermgtion that is contained in the inverse physics
modeling. However, the results of MRMR analysistiom MAG data set clearly show the syner-
gy possible when both using both methods are uBad.finding is reinforced by the empirical
testing via machine learning, as discussed below.

3.4. Investigation of MRMR Results

Since the MRMR analysis resulted in minimal to redestion of the inverse physics model
attributes, and these very attributes are whaintthestry relies on for MEC discrimination, analy-
sis was conducted to further understand this figdin

3.4.1. EMI MRMR Results Analysis

Analysis of the EMI data revealed that the onliefitphysics-derived variable in the top 50 rank-
ordered set was “Chf which was ranked 45th out of 50 for variable orjance. Forty-nine (49)
of the features in the top 50 were computationadngetric (CG) features. The eigenvalue
attributes as described by the inverse physics hmgd@1, 2, p3) — did not appear in the list of
top 50 features. Table 2 shows an abbreviatedfligatures output by the MRMR code.

Table 2. Abbreviated output of MRMR analysis of EMI| data

Feature (attribute) Ranking Feature (attribute)
#1 CG-500
#2 CG-485
#3 CG-335
#45 Ch#

To investigate why the eigenvalue attributes wese nranked with higher priority, we
tested whether or not the computational geomettitbates and the eigenvalues were informa-
tion content redundant. The results of our analgb®w that they are, in fact, redundant. To as-
sess to the extent of the redundancy, we develapéthction using a common set of eight
attributes from the computational geometric datalss explains more than 99% of the variation
in each of the eigenvalugg, B2, B3. Hence, the features developed as part of theputational
geometric attribute formulation contain all theamhation that the eigenvalues have to offer.
This is demonstrated via a regression analysisgusialtivariate Adaptive Regression Splines
(MARS) with 10 times cross-validation [9]. Thusetheed to develop attributes by fitting physics
models to the field data is unnecessary, at leagtis example. Since the computational geome-
tric approach performs at lower S/N than the in@gasysics modeling (10 vs. 100, respectively),
more TOI can be discriminated using this methodreéduer, the features that form the inputs to
the regression models are those that one wouldcexpeh as peak values, ratios between the
channels and parameters of power law fits. Theltseesfi the computational geometric attribute
data set’s ability to reproduce all of the fittduypics-based derived attributes are shown in Table
3: R denotes the correlation coefficient.
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Table 3. Reproducibility of inversion physics-bagedl features using CG-EMI features

Physics-based parameters obtained by inver-R® obtained using 10 times cross-validatioh
sion
Bl 0,99313
B2 0,99315
B3 0,99320
Chi 0,89701
Size 0,98115
Depth 0,99367
Coh 0,76570

In hindsight, it is not surprising that the compiaaal geometric approach includes all of
the information that could be available by fittiphysics models to the data. After all, we devel-
oped the computational geometric model with therdisnation physics in mind. However, this
is the first formal analysis that indicates thais tmformation inclusivity is indeed the case.
Moreover, these results show that the computatigeaietric approach can be used to develop a
physics-based representation from the EMI Dataréstingly, the one (Cha measure of fitness
of the inverse fitted-physics model) attribute ttat appear in the top 50 features is a solid indi-
cator of how well the inverse physics model is expe to fit the data. It is also important to note
that the computation geometric approach was algeiea 89,7% of the variation in the expected
fitness of the inverse modeling. This ability teegict a priori how an inverse modeling task
should perform is extremely valuable for qualitg@snce/quality control purposes.

3.4.2. MAG MRMR Results Analysis

Analysis of the MAG data revealed three of the ptsydlerived variables in the top 50 of the
rank-ordered set; these are Fit_size (rank #1)jrat( rank #6), and Fit_Depth (rank #48). The
remaining 47 of the features in the top 50 were matational geometric attributes. A test of the
ability to produce the fitted physics-based att@isufrom the computational geometric attributes
was conducted, this time with very different resals shown in Table 4.

Table 4. Reproducibility of fitted physics-based MAeatures using computational geometric
MAG attributes

Physics-based parameters obtained by inver-R* obtained using 10 times cross-validatidn
sion (# is the parameter ranking)
Depth (#48) 0,67
Size (#1) 0,73
Dec 0,21
Inc (#6) 0,49
Solid Angle 0,30
Magnetic Moment 0,49

Clearly, the less well-developed computational getnim approach for MAG sensors is
currently not as effective as the EMI approachaptaring the information content from the fit-
ted physics-based inversion model; therefore, &rttork in this area is warranted.

3.5. MRMR Analysis Summary

This MRMR approach is particularly valuable becamiggovides gives the ability to screen im-
portant features and reject ones of lesser valukabrare redundant to making classification pre-
dictions without the need to run classificationaaithms. This means that important variables can
be identified in minutes as opposed to hours osddysimulation computation time. Thus the
benefits associated with the machine-learning, rdalgn-independent analysis of feature contri-
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bution made possible with the MRMR approach aretifold. Not only is it fast and cost-
efficient, it guides when easily computed data-eifeatures should replace more complex ones
to obtain features such as those arrived at wedfiphysics-based inversion. Additionally, it pro-
vides a very fast and efficient screening mechansmank the value of new or proposed fea-
tures, especially when compared to existing featsets. Additionally, these characteristics of
the information-theoretic MRMR approach, when cbamated with results from machine-
learning algorithms, effectively streamline the ersfanding of attribute importance and help to
focus new research into less well-understood arBas. benefit is discussed in more detail be-
low.

4. Machine Learning Analysis and Results

Machine-learning (ML) techniques are tools thaeirdgate the information content in the data
set and then replace that content with a reprebemtalation(s). That representation can then be
used to make predictions relative to unseen ins&na this case sensor data returned from a
geophysical investigation.

Based on the information-theoretic MRMR analysidioed and demonstrated above, we
can anticipate and expect certain outcomes whddibgimodels from the data sets using ma-
chine-learning algorithms and various combinatiohattributes. For example, models produced
using the EMI data set should rank as:

» Best: Combined Geometric and Fitted Model attesy

» Second: Geometric attributes, and,;

* Third: Fitted physics-attributes.

This ranking reflects the fact that the computalayeometric approach replicated the in-
formation content in the inverted fitted physicsdals. The machine-learned model based on the
combined geometric-fitted physics attribute data tva slightly better (or tie with) the geometric
attribute model, since only one physics attribyipeared in the top 50 features (the measure of
the inverse physics model fitness) and then atralegv rank (#45). The data based on the fitted
physics models will rank as third accurate, to ekgent that it does not contain the information
content that the geometric data set provides.

Models produced using the MAG data set are a @iffestory. Clearly, the geometric
attributes present valuable information, as ddfitted physics-inversion attributes. One can only
conclude, therefore, that the combined CG-physata det will produce a more accurate model
than either data or physics alone.

4.1. Empirical Testing using Machine L earning

The models were constructed from the EMI and MA@ d=ets (fitted physics, geometric, geo-

metric-fitted physics). All models were developeging 10 times cross-validation, and all used
the designated technique subset (not just the sobslee top 50 features identified above). The

tool used was TreeNET [9] and used with defauliregs, except the number of trees was set to
2,000.

4.1.1. EMI Machine L earning Results

The model results using the EMI inverse physics ehaldta set is provided in fig. 5 and show
respectable MEC discrimination (ROC>0,95). A reeeigperating characteristic (ROC) Chart is
one that plots the accuracy of a classifier overdhta set; true positive rate of detection orythe
axis and the false positive rate on the x-axis. @l under ROC curve (AUC) is used as a
measure of quality of a probabilistic classifierthwan area of 1.0 being best achievable, and 0.50
(blue line) being no better than random guessiige draph shows the order of MEC removal,
progressing from left to right, with the final exedion occurring at the right-most section of the
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graph. The last remaining MEC item is removed wtienvalue of the y-axis is 1.0. For MEC
removal projects, additional MEC would be removeydnd the last known MEC item as a

means of validation and stakeholder acceptance.

Trie Pos. Rate

0.0
00 01 02 03 04 05 06 07 0B 05 10

00 01 02 03 04 05 06 07 0% 09 10

False Pos. Rate False Fos. Rate

Fig. 5. EMI: Inverse Physics Fig. 6. EMI: Computational
Model, ROC (AUC) =0,98786 Geometry,
ROC (AUC) =0,99609

True Pos, Rate
True Pos. Rate

0.08
00 01 02 03 04 05 06 0T 0B 0§ 1.0
False Fos. Rate

0.0
00 01 02 93 04 05 06 07 08 03 1.0
False Pos. Rate

Fig. 7. MAG: Inverse Physics Fig- 8. MAG: Computational

Model, ROC (AUC) =0,96358 Geometry,
ROC (AUC) =0,95366

True Pos. Rate

Fig. 9. EMI: Computational Fig. 10. MAG: Computation-
Geometry and Inverse Physics al Geometry and Inverse
Model, Physics Model,
ROC (Are AUC)=0,99623 ROC (AUC) =0,97251

The model results using the
EMI geometric data set (provided
in fig. 6) also show respectable
MEC discrimination (ROC > 0,95)
with a much better time/speed
curve for identifying MEC.

4.1.2. MAG Machine-Learning
Results

The model results using the MAG
fitted physics data set, provided in
fig. 7, show respectable MEC dis-
crimination (ROC > 0,95).

The model results using the
MAG geometric data set provided

in fig. 8 also show respectable
MEC discrimination (ROC >
0,95), but with a slightly worse
curve indicating slower identifica-
tion of the final MEC item.

4.1.3. Combined EMI and MAG
Analysis

EMI: The model results using the
EMI-geometric and inverse phys-
ics model data set provided in fig.

9 also show respectable MEC dis-
crimination (ROC>0,95), again

with a slightly better curve show-

ing faster classification of MEC

signals. The expectation of the
classifier performance is in con-
cert with the understanding
gained from the information-

theoretic MRMR analysis. The

computational geometric model
performed better than the inverse
physics model, because it repli-
cated basically all the important
the information content of the fit-

ted physics model and also g-

rated additional information essential for highecwacy MEC classification. The combined
geometric-fitted physics model slightly outperfoxnine geometric-only model; this model in-

cluded the fithess of the inverse model to the.data
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MAG: The model results using the MAG geometric and ris&ghysics model data set
(shown in fig. 10) also demonstrate respectable MliSCrimination (ROC>0,95), with a higher
AUC ROC value with a slightly better curve, but mgmdicate slower identification of the final
MEC found. The expectations of the classifier pgrnfance are in concert with the information-
theoretic MRMR analysis in terms of overall perfamse (a higher AUC ROC value was ob-
tained using the combined data-physics data ddtsyever, the overall identification of that last
MEC was slower; hence this solution would requirerenholes to be dug (and non-MEC items
excavated) than the other ones. These mixed rem@tsdicative of a less than fully developed
MAG data and inverse-physics model.

5. Over-Fitting Test

In machine learning, over-fitting (also known aséimmorizing”) is an important issue with respect
to assuring predictable performance on unseen Batag able to predict how an algorithm will
do on unseen data is more important than the #hgordoing well on training data. To guard
against over-fitting, large data sets are divideid itraining, testing, and/or validation subsets
(where the model’s performance is solely judgedhanvalidation performance statistics) or as in
our case, into a larger number of smaller data where a 10 times cross-validation approach
could be used.

1

o Over-fitting Test Th_e _met_hod used in this study to test
08 for over-fitting is to scramble the target col-

o or YT B Case umns of the EMI-geometric attribute data set
205 1 W solution using a Monte Carlo method. The target vari-
2 o Solutons able (MEC or non-MEC) is solved once; then

02 the target column is scrambled 99 times (for a

o total of 100 runs) using the exact same para-

6 10 20 20 40 50 €0 70 56 5 100 meter settings and a machine-learning model
Monte Carlo Simulation Run Number is then again built. If there is a structural flaw

in the experiment, it will show up. Specifical-
Fig. 11. Machine learning over-fitting test using a |Y: if the accuracy of the solutions developed
Monte-Carlo target (aka label) column scramblingWith the Monte Carlo-scrambled (randomized
labels) targets are similar to the true target
sequencing; this is not a good result. This tealmmigrovides ga/qc check and safe-guards against
deploying models that, while they may look goodeisting phase, they are but mere chance find-
ings and fitting noise — likely to perform poorlpan deployment. As shown in fig. 11, the true
solution (AUC=0,997) exceeds both the average (AQUE56, STDEV=0,054) and maximum
(AUC=0,737) of the Monte Carlo over-fitting testuOconclusion is that the modeling approach
is valid, the model is identifying a signal (nosjditting noise); therefore, the results are expec
to be reasonably reliable for their intended puepos

6. Summary and Results

We demonstrate the value and understandabilithe@fcomputational geometric MEC discrimi-
nation method, and developed a methodology for nistaleding the value of MEC features by
applying information theory. We used machine leagnto fuse the information content of
attributes derived from both machine-learning cotaponal geometric and from fitted physics-
based models.

The authors believe that the inverse physics mogelhile providing great insight, over
compresses the information available in the gedphlsignals into too few variables and hence
impose an artificial limit on that methods accuratiye multi-disciplinary computational geome-
tric (MDCG) is intended to extend — not replacestieep physics-based understanding by sup-
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plementing the discrimination information with fact the inverse physics modeling approach
cannot capture. For the test case, the MDCG appraas found to contain all the information
(in eight common variables) contained in the EMiadset, but not the MAG data set.

The empirical tests conducted using machine-legraire consistent with their perfor-
mance predicted using information theory. We furidentified the information overlap between
our computational geometric approach and the fiptegsics model approach by others: complete
overlap for the EMI sensor — indicating a ratiophisical basis for the method — and a patrtial
overlap for the MAG sensors.
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