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PROVIDING DATA GROUP ANONYMITY USING CONCENTRATION DIFFERENCES 
 
Abstract. Public access to digital data can turn out to be a cause of undesirable information disclosure. That's why it 
is vital to somehow protect the data before publishing. There are two main subclasses of such a task, namely, provid-
ing individual and group anonymity. In the paper, we introduce an original method of protecting the group patterns of 
data. Also, we provide a comprehensive illustrative example. 
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Анотація. Вільний доступ до цифрових даних може призводити до небажаного витоку інформації. Саме 
тому потрібно деяким чином захищати дані перед оприлюдненням. Існують два підвиди цієї задачі, а саме: 
забезпечення індивідуальної та групової анонімності. У роботі ми пропонуємо новий метод захисту групо-
вих властивостей даних. Також наводиться ілюстративний приклад. 
Ключові слова: групова анонімність, статистичний контроль за розкриттям інформації, вейвлет-
перетворення. 
 
Аннотация. Свободный доступ к цифровым данным может привести к нежелательной утечке информа-
ции. Поэтому следует некоторым образом защищать данные перед публикацией. Существуют два подви-
да этой задачи, а именно: обеспечение индивидуальной и групповой анонимности. В работе мы предлагаем 
новый метод защиты групповых свойств данных. Также приводится пример-иллюстрация. 
Ключевые слова: групповая анонимность, статистический контроль за раскрытием информации, вейв-
лет-преобразование. 
 

1. Introduction 
The data anonymity is a subject to researches in different fields, among which privacy-preserving data 

mining [1], statistical disclosure control [2], distributed privacy, cryptography, and adversarial collaboration 

[3] can be mentioned. Moreover, the number of papers on this topic hasn't been reduced in the recent 

years (for instance, see incomplete but very demonstrative bibliography in [4]). It is mainly due to enhanc-

ing the public access to various data for the researchers (or other involved people). They can be possibly 

interested in obtaining either the data about health, insurance, and other personal information, or the large 

samples of complete surveys (e.g., census) [5, 6]. On the other hand, Sweeney showed in her classical 

works [7, 8] that mere depersonalizing the dataset along with excluding the identifiers (which unambigu-

ously violate respondent's anonymity) from it isn't enough for privacy-preserving. That's why there is a 

need in more advanced methods for providing data anonymity which take into account information about 

other respondents. In practice, to provide data anonymity, different systems are used, μ -Argus being one 

of the most demonstrative. It was developed during the SDC-, CASC-, ESSnet-projects, and it's totally 

freeware [9]. 

But, if to analyze existing data anonymity methods more thoroughly, it comes out that they actually 

protect individual privacy only. In other words, they belong to the class of individual anonymity methods. At 

the same time, the problem of protecting respondent group distribution is still open. Let us consider a typi-

cal situation: we cannot mask the information about regional distribution of military personnel in terms of 

individual anonymity. Instead, we might complete this task by redistributing particular respondents over 

different regions to achieve needed patterns. But, there isn't any feasible algorithm developed yet to aid in 

our task. 

In general, we can divide all known data anonymity methods into two large subclasses, namely, 

randomization and group-based anonymization methods. 
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The essential idea of the randomization methods is to mask records' attribute values by adding 

some noise to the data [1, 10]. In the situation described above, it is obvious that the added noise can cer-

tainly mask the true number of military personnel in a region. But, the distribution pattern (e.g., extreme 

numbers locations) will persist, because the noise should by default have a lot smaller amplitude than the 

signal itself. 

On the other hand, group-based anonymization methods [11] aim mainly at gaining k-anonymity 

(using suppression, generalization, data swapping and so on). K -anonymity means that every attribute 

values' combination corresponds to at least k  respondents in the dataset. In the case with our "military" 

example, we might mask individual information about, say, senior military officers (so that they cannot be 

distinguished among the others). But, since the key property ("military"/"civilian") is the only one available, 

splitting the population into these two groups with the follow-up anonymization within each of them doesn't 

lead to masking needed regional distribution. 

Thus, we come to conclusion that the only acceptable option is indeed to (virtually) redeploy re-

spondents between different regions. But, we also have to minimize possible loss of the resultant data 

utility. 

 

2. The Aim of the Paper 
In the paper, we discuss different ways of solving the group anonymity problem. 

Moreover, we set a task even more complicated than the one described above. We consider a 

problem when the comparative distribution of two respondent groups' quantities (or ratios) is supposed to 

be protected. For that matter, we take young males and females distributed by regions and try to hide 

possible extreme differences between their ratios in each region. The reason for protecting this distribution 

is that such extremums can possibly reveal the location of some concealed military cantonment which isn't 

supposed to be known. 

We propose to accomplish such a task by using wavelet transform (WT). It allows us to achieve 

needed patterns by redistributing wavelet approximation values. At the same time, fixing wavelet details 

and other features such as data mean value can surely prevent significant utility loss. To illustrate that, let 

us refer to [12]. In Russia, responses to 44 public opinion polls (1994 – 2001) yielded the following results. 

It turned out that the wavelet details actually reflect hidden time series features which can come in handy 

for sociological forecasting. And, last but not least, WT has been already used for providing data anonym-

ity, though individual only [13] so far. 

3. Theoretic Background 
3.1. Group Anonymity Basics 
Let's collect the depersonalized primary data into a so-

called microfile (see Table 1). 

Here, μ stands for the number of respondents, η 

stands for the number of attributes; jw  stands for the thj  

attribute, ir  stands for the th/  record, ijz  stands for a mi-

crofile data element. 

  Table 1 .  Microfile Data 

 1w  2w  … ηw  

1r  11z  12z  … η1z  

2r  21z  22z  … η2z  

… … … … … 

μr  μ1z  μ2z  … μηz  
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To protect important data patterns, we need to somehow redistribute particular elements ijz . Let 

us formally define this task. 

First of all, we need to distinguish which microfile elements we'll be eager to redistribute. Let's de-

note by vS  a subset of a Cartesian product × × ×
1 2

...
lv v vw w w  of Table 1 columns, where iv , = 1,i l  are 

integers. This set will be called a vital set. Each vector from this set will be called a vital value combina-

tion. Respectively, we will call each element of such a vector a vital value, and 
ivw , = 1,i l  will be called a 

vital attribute. 

We call these values such way because it is vital indeed to protect their distribution. In other 

words, attributes should be chosen as vital ones when the task is set to protect their distribution. E.g., if 

we wanted to hide the distribution of "Middle-aged women" we would need to take "Age" and "Sex" as vital 

attributes. 

But, we may hide the "Middle-aged women" distributions over different value ranges. For instance, 

we can change their distribution over country regions, over ethnic groups, or even over the places they 

work at. Thus, let's denote by pS  a subset of microfile data elements ipz  corresponding to the thp  attrib-

ute, ≠ ∀ = 1,ip v i l . These elements will be called parameter values, whereas thp  attribute will be called 

a parameter attribute. This attribute actually stands for a specific value range to redistribute vital values 

over. 

In the case with "Middle-aged women", the parameter attribute could possibly be "Country region", 

"Ethnic group", or "Place of work". 

Thus, providing group anonymity actually means redistributing records with vital value combina-

tions over different parameter values. 

After having defined the attributes mentioned above, we need to calculate the quantities of micro-

file records with every possible pair of a vital value combination and a parameter value. Received quanti-

ties can be gathered in an array of discrete values = 1 2( , ,..., )mq q q q  which we will call a quantity signal. 

As it was mentioned earlier, providing group anonymity has to be accomplished such way that 

data utility isn't reduced much. It can be easily achieved by using wavelet transform. If to modify wavelet 

approximation, but leave all the wavelet details either fixed or altered proportionally, we might fulfill the 

stated requirements. 

Having applied these transformations to signal q , we receive a new quantity signal 

=% % % %1 2( , ,..., )mq q q q . 

But, in many cases redistributing absolute quantities doesn't yield adequate results. Moreover, re-

distributing them may lead to a serious loss of data utility. Thus, modifying ratios sounds like a much bet-

ter idea. That is why we need to modify our quantity signal by dividing its every value by the overall num-

ber of records with the same parameter value, but the vital values defining the superset for the records to 

be redistributed. For example, when redistributing "Middle-aged women" over the "Country regions", we 

might divide the middle-aged women quantities by the overall number of women in each region. 
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In the outcome we will receive a concentration signal = 1 2( , ,..., )mc c c c . Then, performing opera-

tions identical to the case described above, we can get a new concentration signal =% % % %1 2( , ,..., )mc c c c  with 

a different distribution. 

To show a bit more in detail how to modify a wavelet approximation, we need to revise WT basics 

first. 

3.2. Necessary Wavelet Transform Basics 
In this subsection, we will revise only those wavelet theory facts which are required for the better under-

standing of our further explanations. You may find much more detailed information in [14, 15]. 

So, let's call an array of discrete values = 1 2( , ,..., )ms s s s  a signal. Also, let a high-pass wavelet fil-

ter be denoted as = 1 2( , ,..., )nh h h h , and a low-pass wavelet filter be denoted as = 1 2( , ,..., )nl l l l . 

Then, if we denote a convolution by ∗ , and a dyadic downsampling by ↓ 2n , we can perform sig-

nal s one-level wavelet decomposition as follows: 

↓ ↓= ∗ = ∗1 12 2;n na s l d s h . (1) 

In (1), s and l (as well as s  and h ) are being convoluted first, and then the result is being dyadi-

cally downsampled. In this case, 1a  is an array of approximation coefficients at level 1, whereas 1d  is an 

array of detail coefficients at level 1. 

We can also apply (1) to 1a  and receive approximation and detail coefficients at level 2. Generally 

speaking, applying (1) to approximation coefficients at any level 1−k  results in approximation and detail 

coefficients at level k : 

− ↓ ↓ ↓= ∗ = ∗ ∗K
14424431 2 2 2(( ) )k k n n n

k times

aa l s l l ; (2) 

− ↓ ↓ ↓ ↓

−

= ∗ = ∗ ∗ ∗
14424431 2 2 2 2

1

((( ) )... )k k n n n n
k times

ad h s l l h . 
(3) 

Every signal s can be presented as a sum of approximation and details at appropriate levels: 

=

= +∑
1

k

k i
i

s A D . (4) 

In (4), kA  stands for an approximation at level k , and each iD  stands for a detail at a particular 

level i . They are connected with the corresponding coefficients as follows: 

↑ ↑ ↑ ↑ ↑= ∗ ∗ = ∗ ∗ ∗K K
1442443 14424432 2 2 2 2(( ) ); ((( ) ) )k k k kn n n n n

k times k-1 times

A a l l D d h l l . 
(5) 

In (5), ka  and kd  are being dyadically upsampled (which is denoted by ↑ 2n ) first, and then con-

voluted with an appropriate wavelet filter. 

3.3. Wavelet Reconstruction Matrix 

It may sound weird, but we cannot change wavelet approximation kA  absolutely arbitrarily. This is mainly 

because the wavelet decomposition of a new signal %s  (which is obtained as a sum of a new approxima-
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tion and old details) in this case results in completely different details and approximation. Therefore, not a 

single detail is preserved. 

The only opportunity to preserve the details is to alter approximation coefficients. According to (5), 

changing them doesn't influence the details at all. 

But, formula (5) doesn't really suggest what coefficients should we change and how to receive a 

specific approximation. Fortunately, there exists another technique for obtaining approximations from coef-

ficients. 

In [15], it is described how to carry out WT using matrix multiplications only. In particular, we can 

present obtaining kA  as follows: 

= ⋅k rec kA M a . (6) 

We will call recM  a wavelet reconstruction matrix (WRM). We can always obtain it by consequent 

multiplications of appropriate upsampling and convolution matrices introduced in [15]. 

With the help of WRM, it is easy to find out what coefficients to change in order to get a specific 

approximation (an illustrative example is shown in the next section). After having defined new coefficients 
%ka , we can construct a new approximation (using either (5) or (6)). Then, we need to add this approxima-

tion to the initial wavelet details. As a result, we receive a new signal %s  which totally suits our require-

ments. 

3.4. Applying Concentration Differences to Obtaining New Data 
There exist some real-life problems that cannot be solved by modifying a concentration signal correspond-

ing to only one set of vital attributes. In these cases, the differences between different quantities (or ratios) 

are a subject to protection. 

For that matter, we have to slightly extend our problem definition. Instead of defining one vital set, 

we will define two such sets. The first one will be called a main vital set, and the other one will be called a 

subordinate vital set. We will call every vector from the main vital set a main vital value combination, and 

every element of this vector will be called a main vital value. 

Respectively, every vector from the subordinate vital set will be called a subordinate vital value 

combination, whereas its every element will be called a subordinate vital value. 

It is important to note that the parameter attribute remains common for both vital sets. 

We can construct appropriate quantity and concentration signals. But, in this particular case, we 

won't even try to redistribute concentration signal values. We will construct an additional signal instead. 

So, let =1 1 1 1
1 2( , ,..., )mc c c c  be a main concentration signal (built-up using main vital value combina-

tions), and also let =2 2 2 2
1 2( , ,..., )mc c c c  be a corresponding subordinate concentration signal. Let us create 

a concentration difference signal as δ = δ δ δ ≡ − − −1 2 1 2 1 2
1 2 1 1 2 2( , ,..., ) ( , ,..., )m m mc c c c c c . 

Our next step is to receive a new concentration difference signal δ% . Afterwards, we can construct 

new concentration signals %1c  and %2c  which meet the following conditions: 

1. The differences between these signals' values are δ%  elements. 
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2. New ratios don't differ from the initial ones significantly (for instance, the main concentration 

signal can stay fixed). 

Using new concentration signals, we can always restore corresponding quantity signals. But, the 

mean values of these new signals will totally differ from the initial ones. This is totally unacceptable, be-

cause we cannot alter the overall number of records with appropriate vital values. To overcome this prob-

lem, we need to multiply the resultant quantity signals by such coefficients that guarantee preservation of 

the mean values. Due to the algebraic properties of convolution, in this case wavelet details of our signal 

will be changed proportionally. And that completely satisfies our problem definition. 

In the next section, we will present a comprehensive example that will aid in better understanding 

the main steps of the described algorithm. 

 

4. Experimental Results 
We took Italy Census-2001 microfile provided by [5] as the data to analyze. This microfile contains various 

pieces of information on about 3 million respondents. To show the concentration differences method in 

action, we decided to set a suitable group anonymity task. 

It is obvious that the differences between young males' and females' ratios can possibly point out 

the location of the Forze Armate Italiane cantonments. So, to mask these locations, we decided to choose 

the following parameter and value attributes. 

We took "REGNIT" (which stands for "Region of Italy") as a parameter attribute because we aim at 

changing regional distribution of the mentioned ratios. Each attribute value stands for a particular region of 

Italy, except for the "1" value which stands for two regions, i.e. "Piedmont" and "Aosta Valley". For our 

purpose, we decided to split the data corresponding to this attribute proportionally using the official infor-

mation about these two regions' population [16]. Further on, we will refer to "Piedmont" as "1P", and to 

"Aosta Valley" as "1V". 

Eventually, we receive 20 parameter values standing for each region of Italy. 

Since our task is to process the data corresponding to young males and females, we took "SEX" 

and "AGE" as both main and subordinate vital attributes. In the microfile we analyzed, age is grouped into 

categories, that's why we could take only one vital value corresponding to the young age, i.e. "22". This 

value will serve as both main and subordinate one because we will redistribute males and females of the 

same age. 

At the same time, we took "SEX" value "1" (standing for "Male") as a main value, whereas "2" 

("Female") was chosen as a subordinate one. 

Having determined the data to work with, we need to build up main and subordinate concentration 

signals. To perform that, we have to divide the number of young males and females in each region (see 

Table 2, the 3rd and the 5th rows) by the overall number of people living in the same region (see Table 2, 

the 2nd row). The resultant concentration signals are presented in the 4th and the 6th rows of Table 2. 

Now, we can easily construct a concentration difference signal: δ = (0,0012, 0,0013, 0,0010, 

0,0005, 0,0006, 0,0019, –0,0002, 0,0005, 0,0012, 0,0020, –0,0001, 0,0010, 0,0008, –0,0005, 0,0006, 

0,0018, 0,0030, 0,0003, 0,0006, 0,0014). 

In this paper, we present all the calculated numeric data with 4 decimal numbers (because of the 
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limited space), though all the calculations were carried out with a higher proximity. 

As we can see, there is a global signal maximum in the 17th signal value. Since this maximum can 

possibly expose the location of some military cantonment, we need to change the signal δ  distribution. It 

can be accomplished using different approaches. For instance, we could transit the mentioned maximum 

to another region, or create other alleged maximums in different signal elements etc. For we would like to 

study how choosing different wavelet bases can help in choosing a particular approach, we picked two 

wavelet bases to apply to our example, namely, the first and the second order Daubechies wavelet bases 

[14]. 

So, let us use the first order Daubechies low-pass wavelet filter ⎛ ⎞
≡ ⎜ ⎟
⎝ ⎠

1 1 1,
2 2

l  to perform two-

level wavelet decomposition (2) of a corresponding concentration difference signal: =1
2a (0,0020, 0,0013, 

0,0020, 0,0014, 0,0026). 

According to (6), and using a suitable WRM (see Fig. 1a), we can obtain a signal approximation: 

=1
2A (0,0010, 0,0010, 0,0010, 0,0010, 0,0007, 0,0007, 0,0007, 0,0007, 0,0010, 0,0010, 0,0010, 0,0010, 

0,0007, 0,0007, 0,0007, 0,0007, 0,0013, 0,0013, 0,0013, 0,0013). 

Also, we can obtain the details at levels 1 and 2 (using (5)), and sum them up: + =1 1
1 2D D (0,0002, 

0,0003, 0,0000, –0,0005, –0,0001, 0,0012, –0,0009, –0,0002, 0,0002, 0,0010, –0,0012, 0,0000, 0,0002,   

–0,0012, –0,0001, 0,0011, 0,0016, –0,0010, –0,0007, 0,0001). 

   Table 2. Quantities and ratios distributed by regions 

Region code 1P 1V 3 4 5 6 7 
All people 220952 6326 474894 49411 238279 61883 82198 

Males (initial) 5808 166 13164 1474 6683 1655 1727 

Signal 1c  0,0263 0,0262 0,0277 0,0298 0,0280 0,0267 0,0210 
Females (initial) 5535 158 12671 1449 6536 1540 1747 

Signal 2c  0,0251 0,0250 0,0267 0,0293 0,0274 0,0249 0,0213 

Signal %1c  (1) 0,0269 0,0268 0,0283 0,0304 0,0282 0,0269 0,0210 
Males (final 1) 5900 169 13359 1494 6694 1658 1718 

Signal %2c  (1) 0,0251 0,0250 0,0267 0,0293 0,0274 0,0249 0,0211 
Females (final 1) 5516 157 12627 1444 6513 1535 1724 

Signal %1c  (2) 0,0273 0,0270 0,0284 0,0306 0,0289 0,0267 0,0210 
Males (final 2) 5996 169 13368 1500 6826 1642 1715 

Signal %2c  (2) 0,0251 0,0250 0,0267 0,0293 0,0274 0,0249 0,0218 
Females (final 2) 5500 157 12590 1440 6494 1530 1785 

 
Region code 8 9 10 11 12 13 14 

All people 208428 183928 43037 76918 268221 65895 16548 
Males (initial) 5183 4890 1251 2191 7961 2084 528 

Signal 1c  0,0249 0,0266 0,0291 0,0285 0,0297 0,0316 0,0319 
Females (initial) 5086 4671 1165 2201 7687 2028 536 

Signal 2c  0,0244 0,0254 0,0271 0,0286 0,0287 0,0308 0,0324 

Signal %1c  (1) 0,0251 0,0265 0,0290 0,0285 0,0296 0,0318 0,0319 
Males (final 1) 5196 4853 1242 2179 7902 2084 525 
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Table 2 (cont.) 

Signal %2c  (1) 0,0244 0,0254 0,0271 0,0287 0,0287 0,0308 0,0322 
Females (final 1) 

5068 4655 1161 2198 7660 2021 531 

Signal %1c  (2) 0,0249 0,0266 0,0290 0,0293 0,0308 0,0333 0,0319 
Males (final 2) 

5146 4855 1239 2234 8210 2177 524 

Signal %2c  (2) 0,0253 0,0268 0,0271 0,0286 0,0287 0,0308 0,0324 
Females (final 2) 

5249 4889 1158 2187 7638 2015 532 
 

Region code 15 16 17 18 19 20 Mean 
All people 299790 210976 31368 105710 260549 85428  

Males (initial) 11020 7990 1105 3832 9095 2971 4538,9 

Signal 1c  0,0368 0,0379 0,0352 0,0363 0,0349 0,0348 0,0302 
Females (initial) 10827 7616 1012 3796 8945 2850 4402,8 

Signal 2c  0,0361 0,0361 0,0323 0,0359 0,0343 0,0334 0,0292 

Signal %1c  (1) 0.0369 0.0381 0.0343 0.0363 0.0349 0.0339 0,0303 
Males (final 1) 11013 7984 1071 3811 9045 2879 4538,8 

Signal %2c  (1) 0,0361 0,0361 0,0323 0,0368 0,0352 0,0334 0,0293 
Females (final 1) 10789 7589 1008 3876 9144 2840 4402,8 

Signal %1c  (2) 0,0357 0,0364 0,0331 0,0363 0,0351 0,0353 0,0304 
Males (final 2) 10638 7618 1031 3805 9087 2997 4538,9 

Signal %2c  (2) 0,0361 0,0361 0,0323 0,0366 0,0343 0,0334 0,0294 
Females (final 2) 10758 7567 1006 3843 8888 2832 4402,9 

 

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝ ⎠

1

0,5 0 0 0 0
0,5 0 0 0 0
0,5 0 0 0 0
0,5 0 0 0 0
0 0,5 0 0 0
0 0,5 0 0 0
0 0,5 0 0 0
0 0,5 0 0 0
0 0 0,5 0 0
0 0 0,5 0 0
0 0 0,5 0 0
0 0 0,5 0 0
0 0 0 0,5 0
0 0 0 0,5 0
0 0 0 0,5 0
0 0 0 0,5 0
0 0 0 0 0,5
0 0 0 0 0,5
0 0 0 0 0,5
0 0 0 0 0,5

recM

−
−

−
−
−

−
−
−

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
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2

0,6373 0 0 0 0,1373
0,2958 0,2333 0 0 0,0290
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0,0123 0,5123 0 0 0
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Fig. 1. Wavelet reconstruction matrices: a) WRM obtained using the first order Daubechies filter;  
b) WRM obtained using the second order one 

As it follows from 1
recM  (see Fig. 1a), changing one approximation coefficient results in altering 4 

neighboring approximation values, and no other coefficient influences them. This means we can put some 
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alleged maximums in our signal to solve the task, for we won't be able to eliminate signal's maximum to-

tally. 

In general, we can take any possible approximation coefficients, but for this particular example we 

decided to choose the following ones: =%12a (0,0036, 0,0018, 0,0019, 0,0018, 0,0009). Using these coeffi-

cients guarantees that the new signal's 17th value will be lower than the present one, whereas the 6th and 

the 10th values will become similar to the 17th one. This is exactly what we intended to do, i.e. not eliminate 

the initial maximum but create several other alleged ones. 

Using (6), we can get a new approximation: =%1
2A (0,0016, 0,0016, 0,0016, 0,0016, 0,0009, 

0,0009, 0,0009, 0,0009, 0,0010, 0,0010, 0,0010, 0,0010, 0,0009, 0,0009, 0,0009, 0,0009, 0,0004, 0,0004, 

0,0004, 0,0004). 

By adding old details to a new approximation we can get a new concentration difference signal: 

δ =%1 (0,0018, 0,0018, 0,0016, 0,0011, 0,0008, 0,0021, –0,0000, 0,0007, 0,0011, 0,0019, –0,0002, 0,0010, 

0,0010, –0,0003, 0,0008, 0,0020, 0,0021, –0,0005, –0,0003, 0,0005). 

As we see, we actually reached what we intended to. The next step is to construct new main and 

subordinate concentration signals that suit the requirements stated in the previous subsection. It can al-

ways be completed by solving a corresponding linear equation system with m2  unknowns and m  equa-

tions (these equations are the definitions of the δ  elements). 

We received the following ratios (of course, other solutions also are possible): =%  1
(1)c (0,0269, 

0,0268, 0,0283, 0,0304, 0,0282, 0,0269, 0,0210, 0,0251, 0,0265, 0,0290, 0,0285, 0,0296, 0,0318, 0,0319, 

0,0369, 0,0381, 0,0343, 0,0363, 0,0349, 0,0339); =%2(1)c (0,0251, 0,0250, 0,0267, 0,0293, 0,0274, 0,0249, 

0,0211, 0,0244, 0,0254, 0,0271, 0,0287, 0,0287, 0,0308, 0,0322, 0,0361, 0,0361, 0,0323, 0,0368, 0,0352, 

0,0334). 

Using these ratios and the quantities from the 2nd row of Table 2, we can obtain new quantity sig-

nals  1
(1)q̂  and  2

(1)q̂ . 

But, the overall number of young males and females has been totally changed! To cope with this 

backfire, we need to multiply the quantity signals by appropriate coefficients, i.e. 
= =

=∑ ∑
20 20

1 1
(1)

1 1

ˆ/ 0,9945i
i i

i
q q   

and 
= =

=∑ ∑
20 20

2 2
(1)

1 1

ˆ/ 0,9965i
i i

i
q q  . The rounded results and the ratios calculated using the revised quantities 

are presented in Table 2 (rows 7 to 10). 

After having solved the task using the first order wavelet filter, we propose to apply the second or-

der one to see whether any other possibilities can show out. 

So, let's take the second order Daubechies low–pass wavelet filter 

⎛ ⎞+ +
≡ ⎜ ⎟⎜ ⎟
⎝ ⎠

2 1– 3 3 – 3 3 3 1 3, , ,
4 2 4 2 4 2 4 2

l  to perform two–level wavelet decomposition (2) of the concentration 

difference signal: =2
2a (0,0021, 0,0017, 0,0018, 0,0010, 0,0029). 
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Using corresponding WRM from Fig. 1b, we get the following approximation: =2
2A (0,0010, 

0,0009, 0,0009, 0,0008, 0,0008, 0,0009, 0,0009, 0,0009, 0,0009, 0,0007, 0,0006, 0,0005, 0,0004, 0,0009, 

0,0013, 0,0015, 0,0017, 0.0013, 0,0011, 0,0011). 

Using (5), we get the following sum of details: + =2 2
1 2D D (0,0003, 0,0003, 0,0001, –0,0003,           

–0,0002, 0,0010, –0,0011, –0,0004, 0,0003, 0,0013, –0,0007, 0,0006, 0,0005, –0,0014, –0,0006, 0,0003, 

0,0003, 0,0013, –0,0010, –0,0005, 0,0004). 

The structure of this WRM gives a great opportunity to transit the extremum to another region. For 

example, if we want to eliminate the maximum in the 17th signal's value, and put new extremums in the 1st 

and the 13th ones, we can take the following approximation coefficients: =%22a (0,0032, 0,0032, 0, 0,0032, 

0). In general, we could take any other coefficients. The particular choice depends on the task to be 

solved, and the structure of WRM. 

Using (6), we get the following approximation: =%2
2A (0,0020, 0,0017, 0,0015, 0,0016, 0,0016, 

0,0008, 0,0003, –0,0000, –0,0004, 0,0006, 0,0013, 0,0016, 0,0020, 0,0009, 0,0002, –0,0000, –0,0004, 

0,0006, 0,0013, 0,0016). 

Then, we can calculate a new concentration difference signal and new concentration signals: 

δ =%2 (0,0023, 0,0020, 0,0017, 0,0013, 0,0014, 0,0018, –

0,0008, –0,0005, –0,0002, 0,0019, 0,0006, 0,0022, 0,0025, –

0,0005, –0,0004, 0,0003, 0,0008, –0,0003, 0,0008, 0,0020); 

=%  1
(2)c (0,0273, 0,0270, 0,0284, 0,0306, 0,0289, 0,0267, 

0,0210, 0,0249, 0,0266, 0,0290, 0,0293, 0,0308, 0,0333, 

0,0319, 0,0357, 0,0364, 0,0331, 0,0363, 0,0351, 0,0353); 

=%  2
(2)c (0,0251, 0,0250, 0,0267, 0,0293, 0,0274, 0,0249, 

0,0218, 0,0253, 0,0268, 0,0271, 0,0286, 0,0287, 0,0308, 

0,0324, 0,0361, 0,0361, 0,0323, 0,0366, 0,0343, 0,0334). 

Using these ratios and the quantities from the 2nd row 

of Table 2, we can obtain new quantity signals  1
(2)q̂  and 2

(2)q̂ . 

As we've done before, we need to multiply these 

quantity signals by the coefficients 
= =

=∑ ∑
20 20

1 1
(2)

1 1

ˆ/ 0,9929i
i i

i
q q   

and 
= =

=∑ ∑
20 20

2 2
(2)

1 1

ˆ/ 0,9936i
i i

i
q q   to preserve signals' mean val-

ues. And, the last thing to complete is to round the signal. 

The results can be found in Table 2 (the last 4 rows). 

Also, to compare the results obtained by using differ-

ent wavelet bases, we presented the initial and two final con-

centration difference signals in Fig. 2. 

 

а) 

 

b) 

 

c) 
Fig. 2. Concentration difference signals: 

a) the initial one; b) the new signal 
obtained using the first order wavelet 
filter; c) the new signal obtained using 

the second order one 
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It is important to note that rounding the quantities can lead to changes in wavelet decomposition 

details. But, in most cases these changes are not very significant and don't pose a big threat to the data 

utility preserving. 

All that is left to complete the task is to construct a new microfile. We can always do that by 

changing vital values of different records in order to gain needed distribution. 

 
5. Conclusion and Future Research 
In the paper, we discussed a completely new approach to providing data group anonymity which is most 

acceptable for hiding relative distributions and comparative patterns. The proposed method can be con-

sidered as a method complementary to the existing ones which in fact solve providing individual anonym-

ity problem only. Also, we showed that some real-life tasks can be completed by redistributing appropriate 

ratio differences which is a totally novel approach to providing data anonymity. 

Another conclusion is that different wavelet bases may yield completely different results. Besides, 

it was clearly viewed that some wavelet bases serve well when we need to transit the maximum signal 

values, and the others are most acceptable for creating alleged signal extremums. 

Though, there are still other problems not solved yet. In our opinion, some of them doubtlessly 

are: 

– the problem of choosing optimal wavelet base is still open; 

– it is important to introduce group anonymity measure to be able to evaluate data utility loss. 
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