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The properties of collective electric trap for electrons of charged beam are investigated theoretically. This 
electron beam propagates along magnetic field in cylindrical tube. It is shown that part of beam electrons are 
trapped in the system. 

 

In this paper the properties of collective electric 
trap for electrons of charged beam are investigated 
theoretically. This electron beam propagates with 
velocity  Vb  along magnetic field in conducting 
cylinder. It has been shown that part of the beam’s 
electrons may be tarpped by selfconsistently formed 
electric potential hump. This hump keeps these 
electrons inside the conducting cylinder. The 
dependence of width of electric trap on amplitude of its 
electric field is investigated. 

In magnetized, electron-plasma-filled conducting 
tube slow solitary structure may exist [1, 2]. During 
time interval of electron beam injection into a 
conducting tube an electric potential hump, ϕ(z), is 
formed due to the dissipative instability or Pierce 
instability development with maximum growth rate  
γ≈Vb/L . Here  L is the length of the system. This 
potential hump can be transformed into a solitary 
perturbation on nonlinear stage of instability 
development. This potential hump could trap fraction of 
beam electrons during the time of potential hump 
formation. This paper is concerned with the properties 
of this kind potential solitary structure. We consider 
the case of the strong external longitudinal magnetic 
field, Ho→ ∞ . Then the electron dynamics is one-
dimensional. We choose the initial perturbation in the 
form of electric potential hump of small amplitude and 
of width  ∆z  smaller than the system length. In the case 
of small soliton amplitude,  ϕo (<< Te , here  Te is the 
electron temperature), from the Vlasov equation one 
can obtain the expression for the velocity distribution 
function of electrons. Integrating the latter over 
velocities, one can derive the expression for the 
electron density perturbation in the second order of  
φo= eϕo/Te  
 

∂zδn=∂tφ[y+(1-2y2)(1-R(y))/y]+ ∂zφR(y)+ 
 +φ∂zφ[1-y2+(1.5-y2)(R(y)-1)],  (1) 

R(y) = 1 + (y/√π)∫-∞∞dt exp(-t2)/(t-y),  
y=(Vb-Vo)/Vth√2 

 

Here  Vo, ϕ  are the velocity and potential of the 
soliton. Substituting (1) in the Poisson equation, one 
can derive the KdV evolution equation  
 

∂tφ[y+(1-2y2)(1-R(y))/y]+ ∂zφR(y)+  
+φ∂zφ[1-y2+(1.5-y2)(R(y)-1)]- ∂zzzφ=0   (2) 

 

From (2) one can obtain the equation describing the 
space distribution of the potential:  
 

(∂zφ)2 = φ2R(y) - [1 + (2y2 - 3)R(y)]φ3/6    (3) 
From (3) and ∂zφ|φ=φo = 0  the expression for  R(y) 

and  Vo  follows (similarly to [3]) 
 

R(y) ≈ φo/6,   Vb-Vo ≈1.32Vth   (4) 
 

From (4) one can see that, if beam velocity is close to 
1.32Vth , the potential hump is approximately fixed. 

We determine roughly the soliton width from (3), 
(4):  

∆z = (48Te/eϕo)1/2   (5) 
 

The soliton is the "hole" in the electron phase space. 
In the case of large amplitudes,  eϕo/Te > 1 , from 

the Vlasov equation one can have the expression for the 
velocity distribution function of plasma electrons 
(without electrons trapped by a soliton field)  f = 
fo[(u2-2eϕ/m)1/2+Vosign(u)]  for |u|=|V-Vo|>(2eϕ/m)1/2 
. Here  fo  is the Maxwellian distribution function. Thus 
one can derive the equation for the soliton shape  
 

(∂zφ)2 =- φ + (2/√π)1/2 ∫-∞∞dt (t-y)2exp(-t2){[1 + φ/(y-
t)2]1/2 - 1}                (6) 

 

From (6) the expression for the soliton width follows  
 

∆z = [2eφo/Te(√2 - 1)]1/2    (7) 
 

From (7) one can conclude that the soliton width 
increases with φo . Hence, taking into account the 
trapped electrons is important. We assume for their 
density distribution the following expression  nt r(z) = 
ntroexp [eφ(z)/Tt r]. Here  Tt r  is the effective 
temperature of trapped electrons. Using last expression 
one can obtain similarly to (7) that the width of soliton 
increases wi th amplitude growing.  

These properties of soliton and its amplitude 
dependences were observed in experiments and 
numerical simulations [1].  

Similar electron trap has been observed in [4]. 
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