УДК 535.37:541.49:546.650

С.С. Кость, Н.В. Русакова, А.Р. Мустафина, Ю.В. Коровин

СПЕКТРАЛЬНО-ЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА КОМПЛЕКСОВ НЕОДИМА И ИТТЕРБИЯ С *n*-СУЛЬФОНАТОТИАКАЛИКС[4]АРЕНОМ

Впервые обнаружена 4f-люминесценция ионов неодима (Nd^{3+}) и иттербия (Yb^{3+}) в комплексах с водорастворимым n-сульфонатотиакаликс[4]ареном (TCAS). Установлен состав комплексов, условия образования и проанализировано увеличение 4f-люминесцентного сигнала комплексов Nd^{3+} и Yb^{3+} от природы поверхностно-активных веществ (Π AB).

Известно, что каликс[п]арены представляются удобными молекулярными платформами для конструирования на их основе трехмерных структур с широким спектром размеров полости, различающихся числом и типом центров связывания, пространственным расположением координирующих атомов, возможностью изменения баланса между жесткостью и гибкостью рецептора. Одним из перспективных направлений является применение каликс[п]аренов в качестве рецепторов на ионы лантанидов ввиду использования последних в таких областях как биоаналитическая химия, оптоэлектроника, волокно-оптические усилители, люминесцентные метки в медицинской диагностике и т.п. [1, 2]. В свою очередь, в ряду данных f-элементов все большую актуальность в последнее время приобретает исследование ИК-люминесценции ионов лантанидов, продиктованное появившимися перспективами ее практического использования в биомедицине [3, 4].

Цель данной работы — изучение комплексообразования водорастворимого n-сульфонатотиа-каликс[4]арена (TCAS) с ионами неодима (Nd³⁺) и иттербия (Yb³⁺), 4f-люминесценция которых наблюдается в ближней ИК-области спектра. В ходе исследований впервые была обнаружена собственная люминесценция Nd³⁺ и Yb³⁺ в комплексах с TCAS, по интенсивности которой были определены оптимальные условия комплексообразования, состав комплексов, а также установлено влияние ПАВ различного типа на люминесцентный сигнал.

Синтез *п*-сульфонатотиакаликс[4]арена проводили по методике, описанной в работе [5].

Растворы хлоридов неодима и иттербия ($C = 1.10^{-2}$ моль/л) готовили растворением навесок их оксидов высокой чистоты (99.98 %) в концентри-

рованной HCl с последующим упариванием. Сухой остаток растворяли в дистиллированной воде. Концентрацию растворов солей лантанидов в водных растворах устанавливали титрованием раствором комплексона III с индикатором арсеназо I в присутствии уротропина.

В работе использованы поверхностно-активные вещества (ПАВ) фирмы Aldrich и Fluka. Исходные растворы ($5\cdot10^{-2}$ моль/л) ПАВ были приготовлены растворением точных навесок в бидистиллированной воде.

Для создания необходимого значения рН применяли ацетатные, аммиачные и Tris-буферные растворы. Измерение рН проводили при использовании рН-метра OP-211/1 со стеклянным электродом.

Электронные спектры поглощения растворов комплексов в водной среде записывали на спектрофотометре Specord M-40 UV-Vis. Спектры люминесценции комплексов лантанидов регистрировались на спектрометре СДЛ-1, возбуждая люминесценцию ртутной лампой ДРШ-250 с выделением излучения нужной длины волны светофильтром УФС-2. Люминесценцию ионов неодима и иттербия регистрировали в области 960—1000 и 1030—1080 нм соответственно. Интенсивность полос люминесценции ($I_{\rm J}$) определяли, измеряя площадь под их контуром, в полученные величины вводили поправки на спектральную чувствительность ФЭУ.

Комплексные соединения ионов Nd³⁺ и Yb³⁺ с TCAS синтезировали следующим образом: к водному раствору соли лантанида определенной концентрации добавляли раствор буфера (с соответстующим рН) и раствор натриевой соли *п*-сульфонатотиакаликс[4]арена. Время образования комплекса при комнатной температуре составляет 10—15 мин, что определено по скорости достижения

© С.С. Кость, Н.В. Русакова, А.Р. Мустафина, Ю.В. Коровин, 2009

максимального люминесцентного сигнала.

Методом молярных отношений и ограниченного логарифмирования было определено соотношение компонентов в комплексах Yb(Nd)—TCAS = 1:1, что совпадает со стехиометрией комплекса Tb: TCAS.

Ранее [6] нами было показано, что спектр поглощения лиганда характеризуется двумя полосами с $\lambda_{\text{макс1}}$ 203.0 и $\lambda_{\text{макс2}}$ 299.1 нм. Спектры поглощения комплексов Nd^{3+} и Yb^{3+} с TCAS при рН 8.4 подобны тем, что наблюдались в случае ${\rm Tb}^{3+}$ и ${\rm Dy}^{3+}$ [6]. Появление полосы $\lambda_{\rm Makc3}$ 318.8 нм свидетельствует о комплексообразовании, в котором принимают участие фенольные заместители нижнего обода лиганда, тогда как в области рН<6 она отсутствует. Как известно [7], комплексообразование водорастворимымых каликсаренов существенно подвержено влиянию кислотности среды: в частности, с гадолинием комплексы могут образовываться как по верхнему (рН< 5), так и по нижнему (рН>5) ободу сульфосодержащего лиганда, что обусловлено константами диссоциации ОН-групп. В связи с этим было логично изучить зависимость интенсивности люминесценции в комплексах TCAS с ионами Nd³⁺ и Yb^{3+} от pH раствора в интервале pH 3.0—11.0.

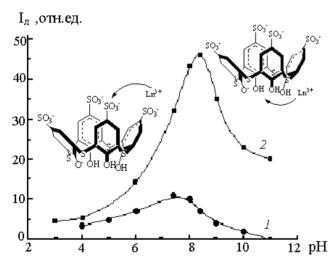


Рис. 1. Зависимость I_{π} комплексов Nd—TCAS (*I*) и Yb—TCAS (*2*) от pH раствора (водный раствор: $C_{\rm Ln} = 1 \cdot 10^{-5}$, $C_{\rm TCAS} = 5 \cdot 10^{-5}$ моль/л).

Как видно из рис. 1, образование комплекса с иттербием происходит уже в достаточно кислой среде (pH<3.0) с координацией иона лантанида по верхнему ободу макроцикла через сульфо-группы.

Необходимо отметить, что наблюдаемая интенсивность люминесценции комплексов иттербия в кислой области является подтверждением комплексообразования по верхнему ободу лиганда. При повышении рН≥6.0 (координация фенолятными группами) наблюдается постепенное увеличение сигнала до рН 8.7. В дальнейшем происходит резкое падение интенсивности, что, вероятно, связано с процессами гидролиза лантанидов. Максимум люминесценции в комплексе Yb-TCAS наблюдается при рН 7.5—8.5. Таким образом, 4f-люминесценция данного иона свидетельствует о взаимодействии его с TCAS, как при координации по сульфо-группам (кислая область), так и по фенольным группам нижнего обода лиганда (нейтральная область).

В случае комплекса Nd—TCAS люминесцентный сигнал можно зафиксировать начиная с pH>4, что можно объяснить большим влиянием безызлучательных потерь энергии, а максимум несколько смещен в область pH 7.0—8.0.

В спектрах люминесценции комплекса Yb—TCAS (рис. 2, a) наблюдается полоса, соответствующая единственному переходу в низкочастотной области спектра (λ =979 нм) с возбужденного уровня ${}^2F_{5/2}$ на основной уровень ${}^2F_{7/2}$. А спектр люминесценции комплекса неодима характеризуется полосами 880, 1062 и 1345 нм, отвечающими f-f-переходам ${}^4F_{3/2} \rightarrow {}^4I_{9/2}$, ${}^4F_{3/2} \rightarrow {}^4I_{11/2}$ и ${}^4F_{3/2} \rightarrow {}^4I_{13/2}$. Наиболее интенсивной является полоса 1062 нм, поскольку соответствует так называемому лазерному переходу.

Как видно из рис. 2, а, интенсивность люминесценции комплекса Yb—TCAS в 4 раза выше таковой для Nd—TCAS, что можно объяснить исходя из детального сравнения 4f-энергетических уровней Nd³⁺, Yb³⁺ и рассмотрения схемы внутримолекулярного переноса энергии (рис. 2, б). Расположение триплетного уровня лиганда TCAS (T= $=21800 \text{ cm}^{-1}$) [8] предполагает достаточно эффективный внутримолекулярный перенос энергии с него на резонансные уровни иттербия и неодима $(E_{\rm Yb} = 10250~{\rm cm}^{-1},~E_{\rm Nd} = 11800~{\rm cm}^{-1})$ и полностью исключает потери энергии, обусловленные процессом обратного переноса энергии, так как величина энергетического зазора в изучаемых комплексах превышает 2000 cm^{-1} [9]. В данной системе в большей степени необходимо учитывать безызлучательные потери, связанные с высокочастотными колебаниями связей молекул лиганда и воды $(v_{C-H} \approx 2950 - 3000 \text{ cm}^{-1}, v_{O-H} \approx 3300 - 3500 \text{ cm}^{-1}). \Pio-$

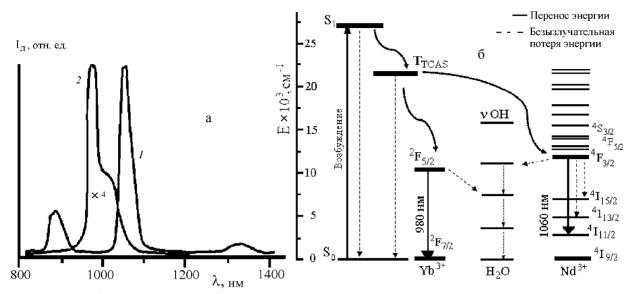


Рис. 2. Спектры люминесценции комплексов Nd—TCAS (I) и Yb—TCAS (I) при pH 8.0 (I) и схема внутримолекулярного переноса энергии (I).

скольку известно, что степень тушения люминесценции молекулами воды обратно пропорциональна энергетической щели между излучающим и основным уровнем иона лантанида, а данные величин для Nd^{3+} и Yb^{3+} составляют 5500 и 10200 см $^{-1}$ соответственно, то эффективность тушения 4f-люминесценции иона иттербия координированными молекулами воды ниже, чем для неодима. Дополнительный вклад в процесс безызлучательных потерь энергии комплекса Nd — TCAS также вносит наличие компонентов мультиплета $^4I_{9/2-15/2}$, расположенных под возбужденным уровнем неодима $^4F_{3/2}$.

В ряде работ [10, 11] представлены существующие традиционные приемы, с помощью которых можно минимизировать процессы безызлучательной дезактивации. Одним из таких приемов, позволяющих увеличить гидрофобизацию ионного окружения, является проведение реакций и последующих люминесцентных измерений в среде поверхностно-активных веществ [12—14]. Использование ПАВ, вытесняющих воду из координационной сферы комплекса, позволяет в значительной степени устранить ее гасящее действие, а также способствует уменьшению рассеяния энергии электронного возбуждения люминесцирующих центров за счет их фиксаци в мицеллах.

Таким образом, с целью увеличения сигнала 4f-люминесценции были изучены люминесцентные свойства комплексов Nd^{3+} и Yb^{3+} с TCAS в присутствии ПАВ различных классов — катион-

ных (кПАВ), анионных (аПАВ) и неионных (нПАВ) при содержании их равном, ниже и выше критической концентрации мицеллообразования (ККМ).

Добавляя ПАВ после образования комплексов Yb(Nd)—TCAS, удалось зафиксировать увеличение интенсивности люминесценции в случае кПАВ (этония, цетилтриметиламмоний бромида (ЦТАБ), в ряду пиридиниевых производных) и нПАВ (таблица).

Методом ограниченного логарифмирования [15] соотношение компонентов в комплексах Yb (Nd): TCAS: кПАВ было найдено равным 1:1:1 для этония и ЦПБ и 1:1:2 для ЦТАБ.

Изменение интенсивности люминесценции комплексов иттербия и неодима с *п*-сульфонатотиакаликс[4]ареном в присутствии кПАВ и нПАВ

ПАВ	$I_{\Pi ext{AB}}/I_{\pi}$					
	$C_{\Pi AB}$ < KKM		С _{ПАВ} =ККМ		$C_{\Pi AB}$ >KKM	
	Yb	Nd	Yb	Nd	Yb	Nd
Этоний	1.8	2.6	3.0	8.2	2.7	8.0
ЦТАБ	1.6	2.4	2.5	7.8	2.1	7.6
ЦПБ	1.4	2.0	2.0	7.1	1.8	6.8
Тритон X-100	1.0	1.1	1.5	2.4	1.8	2.6
Твин-85	1.0	1.0	1.3	2.0	1.5	2.3

Наибольшее увеличение $I_{\rm Л}$ (в 3.0 раза для комплексов иттербия и в 8.2 раз для комплексов неодима) наблюдается в присутствии этония при концентрации, равной ККМ, при этом рост сигнала начинается уже в области концентраций ниже ККМ. Усиление интенсивности люминесценции при добавлении нПАВ значительно меньше (1.3—2.4 раза) и происходит только при концентрациях, равных или выше ККМ. Структура спектров 4f-люминесценции лантанидов при этом не изменяется. Что касается аПАВ, то их наличие в растворе практически не влияет на люминесценцию комплексов неодима и иттербия.

Наблюдаемое увеличение люминесценции уже при концентрациях, меньших ККМ, можно объяснить как электростатическим взаимодействием противоположно заряженных групп лиганда и кПАВ с образованием ассоциатов, так и специфическим гидрофобным взаимодействием. Гидрофобный характер ПАВ способствует вытеснению молекул воды из гидратной оболочки Ln, что приводит к уменьшению гасящего действия ОН-групп воды, вытесняемых из координационной сферы комплекса.

На примере комплекса Nd с TCAS был прослежен вклад в величину 4f-люминесценции гидрофобных взаимодействий в ряду молекул пиридиниевых оснований, которые прямо связаны с длиной углеводородного радикала ПАВ. Как видно из рис. 3, интенсивность люминесценции комплекса непрерывно возрастает при добавлении пиридиниевых оснований с длиной радикала от C_8 до C_{16} и незначительно увеличивается от C_{16} к C_{18} . Из этого следует, что достижение максималь-

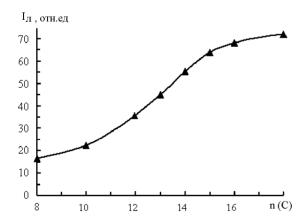


Рис. 3. Зависимость $I_{_{\Pi}}$ комплекса Nd—TCAS от длины гидрофобного радикала пиридиниевых производных ($C_{\mathrm{Nd}}=1\cdot10^{-5},~C_{\mathrm{TCAS}}=5\cdot10^{-5}$ моль/л, $C_{\mathrm{\Pi AB}}=$ ККМ).

ного эффекта гидрофобных взаимодействий в случае пиридиниевых кПАВ возможно в присутствии цетил- и октадецил-производных.

Увеличение концентрации кПАВ до ККМ приводит к фиксации комплексов в мицеллах кПАВ, тем самым повышая "жесткость" структуры молекулы комплекса. Следствием такого эффекта является достижение существенного увеличения 4f-люминесценции комплексов по причине уменьшения рассеяния энергии электронного возбуждения люминесцирующих центров. В то же время небольшое снижение интенсивности люминесценции при концентрации ПАВ выше ККМ является следствием рассеивания излучения в образующихся мицеллах.

Следует отметить, что мицеллярные растворы кПАВ ($C \le KKM$), полученные одновременным смешением компонентов, характеризуются снижением $I_{\rm л}$ по сравнению с наблюдаемой для Ln— TCAS. Существующее различие люминесцентных данных при различном порядке смешения компонентов указывает на неравновесность солюбилизационных процессов в изученных системах. Более детально процессы, происходящие при различном порядке приготовления комплексов были изучены на примере Tb(Dy)—TCAS [6] и могут быть применены к данным комплексам.

Влияние нПАВ на I_{Λ} комплексов иттербия и неодима происходит в меньшей степени и в несколько другой области концентраций ($C \ge KKM$). Отличительной чертой нПАВ является отсутствие заряда, в результате чего исключается электростатическое взаимодействие с молекулами лиганда, что и подтверждается отсутствием изменений в I_{Λ} при концентрациях до ККМ. Наблюдаемое увеличение 4f-люминесценции лантанидов в мицеллярных растворах нПАВ при $C \ge KKM$ можно объяснить, по всей вероятности, фиксацией комплексов на мицеллах в результате образования слабых водородных связей.

Таким образом, 4*f*-люминесценция ионов Nd³⁺ и Yb³, реализуемая в комплексах с водорастворимым *n*-сульфонатотиакаликс[4]ареном, позволила установить не только оптимальные условия комплексообразования с данным лигандом, но и проанализировать факторы, влияющие на ее величину. Наибольший сигнал люминесценции при образовании комплексов в водной среде наблюдается для Yb—TCAS, что согласуется с расположением энергетических уровней иона Yb³⁺. Определено, что введение поверхностно-активных веществ, уменьшающих безызлучательные потери

энергии возбуждения, связанные с колебаниями связей С-H и O-H, в большей степени сказывается на повышении интенсивности люминесценции комплекса Nd—TCAS. Это обстоятельство подтверждает тот факт, что изучаемый комплекс неодима более чувствителен к изменению координационного окружения, чем комплекс иттербия.

РЕЗЮМЕ. Вперше виявлена 4f-люмінесценція йонів неодиму (Nd^{3+}) та ітербію (Yb^{3+}) в комплексах з водорозчинним n-сульфонатотіакалікс[4]ареном (TCAS). Встановлено склад комплексів, умови утворення та проаналізовано збільшення 4f-люмінесцентного сигналу комплексів Nd^{3+} та Yb^{3+} від природи поверхнево-активних речовин ($\mathrm{\Pi}\mathrm{AP}$).

SUMMARY. The 4f-luminescence of neodymium and ytterbium ions in the complexes with water-soluble p-sulfonatothiacalix[4]arene (TCAS) was detected for the first time. The composition of complexes, the condition of formation was established and increase of 4f-luminescent signal of Nd³⁺ and Yb³⁺ complexes depending from the nature of surfactants was analyzed.

 Pietraszkiewicz M., Klonkowski A., Staniszewski K. et al. // J. Inclus. Phen. Macrocycl. Chem. -2004. -49. -P. 61—67.

Физико-химический институт им. А.В. Богатского НАН Украины, Одесса Институт органической и физической химии им. А.Е. Арбузова КНЦ РАН, Казань

- 2. Dossing A. // Eur. J. Inorg. Chem. -2005. -8. -P. 1425—1434.
- 3. Tsukube H., Shinoda S., Tamiaki H. // Coord. Chem. Rev. -2002. -226. -P. 227—234.
- Petrovas C., Daskas S., Lianidou E. // Clin. Biochem. -1999. -4. -P. 241—247.
- Iki N., Fujimoto T., Miyano S. // Chem. Lett. -1998.
 -7. -P. 625—626.
- 6. Русакова Н.В., Кость С.С., Мустафина А.Р. и др. // Изв. АН. Сер. хим. -2008. -3. -C. 555—560.
- 7. Amirov R., McMillan Z., Mustafina A. et al. // Inorg. Chem. Commun. -2005. -8. -P. 821—824.
- 8. Kost S., Rusakova N., Korovin Y. // Proc. XIth Intern. Seminar on Inclusion Compounds. -Kyiv, Ukraine, 2007. -P. 107—108.
- Sun L., Zhang H., Meng Q.-G. et al. // J. Phys. Chem. B. -2005. -109. -P. 6174—6182.
- Kropp J., Windsor M. // J. Chem. Phys. -1965. -5.
 -P. 1599—1608.
- 11. Bunzli G.-C.G., Mabillaro C., Versin J. // Inorg. Chem. -1982. -12. -P. 4214—4218.
- 12. Darwent J., Flint C., Sharpe N. // J. Chem. Soc., Chem. Commun. -1988. -11. P. 747—748.
- 13. Peter S., Panigrahi B., Viswanathan K. et al. // Anal. Chim. Acta. -1992. -260. -P. 135—141.
- Wenlian L., Weili L., Gui Y. et. al. // J. Alloys. Compounds. -1993. -1. -P. 107—110.
- 15. *Булатов М.И.*, *Калинкин И.П.* // Практическое руководство по фотометрическим методам анализа. -Л.: Химия, 1986.

Поступила 25.09.2008

УДК 546.443, 546.817

Е.С. Яновська, А.Д. Дадашев, В.А. Тьортих

КОМПЛЕКСОУТВОРЕННЯ КАТІОНІВ ПЕРЕХІДНИХ МЕТАЛІВ З ПОЛІГЕКСАМЕТИЛЕН-ГУАНІДИНХЛОРИДОМ, ХІМІЧНО ЗАКРІПЛЕНИМ НА ПОВЕРХНІ СИЛІКАГЕЛЮ

Здійснено ковалентне зв'язування полігексаметиленгуанідинхлориду з поверхнею аміносилікагелю, активованого ціанурхлоридом. Вивчено адсорбційні властивості кремнезему з прищепленим полімером щодо катіонів Zn(II), Cd(II), Pb(II), Cu(II), Mn(II), Ni(II), Fe(III), Co(II). Досліджено процеси комплексоутворення цих йонів з 2-(4-піридилазо)резорцином і 1-(2піридилазо)-2-нафтолом на поверхні силікагелю з хімічно закріпленим полігексаметиленгуанідинхлоридом.

Комплексотвірні хімічно модифіковані кремнеземи все ширше застосовуються для передконцентрування та вилучення слідових кількостей катіонів з водних розчинів [1—4]. Значний інтерес викликає закріплення на поверхні реагентів, що мають не лише комплексотвірні, але і йонообмін-

© Е.С. Яновська, А.Д. Дадашев, В.А. Тьортих, 2009