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The method for  defining basic  geometric  parameters of  precision quadrupole  lenses is  offered.  The method 

allows one to obtain the field of working area differing from required one less than by 10
-4

 compared with the basic 
component. The lens shape is described by 2 parameters. The method allows taking into account the field distortions 
caused by saturation of iron. Moreover, it is possible to calculate lenses with a complicated multipolar structure 
including the forbidden field harmonics. The paper contains the results of calculations for lense shapes used in actual 
installations.

PACS: 02.Dk, 02.30.Em.

INTRODUCTION
The  multipolar  magnetic  lenses  are  ones  from the 

basic  elements  in  the  accelerator  engineering.  For 
calculation  of  lenses  the  problem  is  set  as  follows: 
according to the specific field distribution it is necessary 
to obtain geometric parameters of a multipole. Major of 
these parameters is the pole shape. The basic purpose of 
this  work is  deriving of  analytical  expressions,  which 
connect by a relationship the pole shape with the field 
multipolar structure.

APPLICATION OF CONFORMAL MAP FOR 
DESCRIPTION OF MULTIPOLES WITH 

CURVILINEAR POLES
As is known the magnetic field (hereinafter - field) 

can be expressed in terms of the complex potential z(ω) 
and in terms of the inverse to complex potential function 
ω (z) by expression [1]
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The  function  ω(z)  can  be  obtained  considering  a 
conformal mapping of a rectilinear band 0<Im(z)<H on 
a “pole band” which is generated by the symmetry lines 
of a multipole and by the pole profile Fig.1; [2].
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where the function G(z) coincides within the accuracy of 
an integration constants  with the Schwarz integral  for 
the band [2]:
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where:  H is  the  height  of  the rectilinear  band  on  the 
plane z;  ν0(t)is the declination angle of the lower shore 
of the “pole band” (symmetry lines of multipole) as a 
function of the abscissa t of the z-plane (z=t+is) of the 
rectilinear  band; νH(t)is  the  declination  angle  of  the 
upper  shore  of  the  “pole  band”  (pole  shape)  as  a 

function of the abscissa t of  the z-plane (z=t+is) of the 
rectilinear band.

At  this  map  (2)  the  lower  shore  of  the  band 
0<Im(z)<H of  the  z-plane  is  transformed  to  the 
symmetry line of a multipole and the upper one to the 
pole profile. Then the first summand of the integral (3) 
answers for the problem symmetry. Hereinafter we shall 
consider  only  'pure'  multipoles  with  the  rectilinear 
symmetry lines. Then the following definition is right:
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Fig. 1. The  scheme  of  conformal  mappings  for  a  
multipole.

Obviously that for  thedipole symmetry  Umult=0; for 
the quadrupole symmetry Umult =-π/2; for the sextupolar 
symmetry Umult = -π2/3; etc.

With  such  a  definition  the  first  summand of  the 
integral (3) takes the form:
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So,  for  the  multipolar  symmetry  this  factor 
determines the growth of field from the zero value at the 
aperture center to the certain value at the aperture edge.
The second part  of the integral (3) describes the pole 
shape.  Let  us  assume  that  the  pole  has  a  rectilinear 
exterior  slants and  an  interior  sector.  Then  the 
declination angle of the tangent for the upper shore to 
the abscissa axis of ω-plane varies under the law:
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After simple transformations the second part of (3) 
becomes as
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where: the first summand (7a) is the contribution of the 
left  slant from  а1;  the  second  summand  (7b)  is  the 
contribution of the part  between points  а1 and  а2;  the 
third summand (7c) is the contribution of the right slant 
from а2.
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Here  and  further  the  polylogarithmic  function  Lij 

possessing the following properties is used:
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DEPENDENCE BETWEEN FIELD 
HARMONIC STRUCTURE AND POLE 

SHAPE
The integral (2) representing the function inverse to 

the complex potential is convenient to be present as:
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where: Y(z), T(z) is defined by (5), (9).
Obviously that the field in coordinates of the band 

0<Im(z)<H looks like (see (1)):
( ) ( ) ( )[ ]zTzYUzB mult −−= exp . (11)

This expression has as an argument a coordinate of 
the z-plane instead of physical Cartesian coordinates of 
the  ω-plane  containing  a  pole.  Therefore  expressions 
(10,11) are the parametric representation of a field. In 
practice it is convenient to have expressions describing a 
field in physical coordinates (i.e. in coordinates of the 
ω-plane).  For  deriving  such  expressions  we  use  the 
following procedure. 

We shall obtain derivatives of the field dBi(z)/dω(z)i 

in the  ω-plane as functions of z.  For  this purpose we 

note that the increment of coordinates on the plane ω is 
equal to

( ) ( )[ ]dzzTzYUd mult += expω . (12)
Now we can obtain the first derivative of a field in 

coordinates of a z-plane:
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Similarly it is possible to obtain any derivative, using 
the  recursive ratios:
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Let  us  relate  the  point  z(0,0)  of  the  z-plane 
containing the band 0<Im(z)<H and the point ω(0,0) of 
the  plane  containing  the  pole.  Then  the  factors 
calculated according to the formulas (14) are the Taylor-
series coefficients of the field but now for the  ω-plane 
containing  the  pole  i.e.  in  physical,  Cartesian 
coordinates.  It  is  very  important  for  the  practical 
applications.

IDEAL QUADRUPOLE SYMMETRY
As an  ideal  quadrupole  we shall  mean a  case  for 

which Umult =−π/2 (see (4), Fig.1). Let us consider a map 
of the rectilinear band 0<Im(z)<H to the “polar band” 
not laying down conditions to the pole shape. Suppose 
that there is a certain  “shape function” T(z) equal to the 
integral on the upper shore of the band (see (7)).

The  principal  performance of a  quadrupole  lens is 
the gradient

Having  produced  all  substitutions  for  the  known 
values Umult, Y (z) we shall obtain:
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The solution of Eq. (26) is:
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Here  the  label  T0(z)   is  applied  to  distinguish the 
actual “shape function” (7) (in which both angularities 
and curvature of the medial sector of the pole profile are 
taken into account) from the ideal one (16).  From the 
conventional  definition,  that  the  field  at  centre  of  a 
multipole is equal to zero follows С=0 (constant of the 
integration in (16). In this case the map of the rectilinear 
band of the z-plane to the polar  band of the  ω-plane, 
looks like (substitution (16) in (10)):
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where the following definition is right:
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In particular, if  N(z) =const=N0 the expression (17) 
becomes  simpler  to  the  well-known  expression,  the 
inverse  of  which  gives  a  complex  potential  for  the 
quadrupole symmetry.
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The coefficient  N0 has a simple metric  sense.  It  is 
possible  to  show  that  by  virtue  of  properties  of 
conformal representations:
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In case of calculation of the lens with a complicated 
multipolar  composition  it  is  necessary  to  solve  the 
following set of equations:
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The first equation of this system expresses the fact 
that with a conformal map the value of scalar potential 
(imaginary part  complex) on equipotential  lines which 
are mapped each other  is  intact.  The second equation 
expresses the circumstance that a certain point (Rx,Ry) of 
the ω-plane is mapped to the point (0,H) of z-plane. The 
last equation defines the position of the point (Rx,Ry) on 
the  ω plane by setting  the aperture radius. The system 
of four equations (21) contains 4 unknowns Rx, Ry, N0, H 
and can by solved if coefficients λi are known quantities. 
The coefficients  λi can be obtained from consideration 
of field derivatives on the rules (14) with allowance for 
(18):
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The  process  can  be  prolonged  as  much  as  long. 
However in practice the low numbers of harmonics are 

most  significant.  The  system  (22)  can  be  solved 
concerning the even expansion coefficients  λi.  Here is 
the solution for the first terms of expansion:
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Thus set of equations (21),  (23)  completely define 
the  ideal  shape  function  according  to  the  given 
multipolar structure (coefficients Bi).

ACTUAL PROFILES OF QUADRUPOLE 
LENSES

Now, when the forms of ideal shape functions (16) 
and  actual  one  (7)  are  known,  we shall  require  their 
coincidence  in  M points  on  a  segment  [0,H]  which 
corresponds to the radius of the aperture on the ω-plane. 
(see  (19,20)).  The  better  is  the  coincidence  of  these 
functions in a working area, the less is the deviation of 
the  field  in  actual  geometry  from the  required  field. 
Therefore  requirement  of  equality  of  ideal  and  actual 
functions of the shape in  M points of the working area 
generates a system M of equations, which can be used 
for determination of conformal map parameters.

The reasons of symmetry reduce in the requirements:
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Let  us  require  that  in  points  of  conjugation  of 
various profile sectors the function Q(t) was continuous. 
Add to this the requirements (24) and we shall obtain a 
set of equations for definition of another parameters.
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Thus if, for example, we tried to specify Q(t) by the 
polynomial of 7-th degree, then only 2 parameters will 
be  by free. Hereinafter we shall use the qi parameters at 
the lowest  degrees of  a  polynomial  as free ones.  The 
coefficients  at  the  higher  degrees  will  answer  for 
conjugation of the pole surface.
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Further the lens with the aperture 35 mm and with 
the slant angle 30° was considered, Fig. 2.  This lens is 
planed to be used in the installation [4]. The parameters 
a,  q1,  q3 were defined.  The pole profile constructed on 
these  parameters  (2)  was  substituted  in  the  program 
MERMEID [3] as an input. The multipolar composition 
of the field was determined at various currents, Fig. 3. 
The harmonics presented in the expansion are caused 
by  the  influence  of  the  excitation  coil  and  saturation 
effects.  Therefore  calculated  multipolar  composition 
was  substituted  in  (23)  with  the  opposite  sign  for 
definition  of  preliminary changed  parameters  of 
conformal transformation. As a result a new profile of 
the pole was obtained. The allocation of the gradient for 
the lens with such a pole is shown in Fig. 4.

Fig. 2. Cross-section of quadrupole lens.

Fig. 3. The radial dependence of the gradient in the  
lens (R=0.035 m) with the pole shape obtained by the  
model based on the conformal map for various gradient  
values.

CONCLUSION

The analytical expressions, obtained in this paper, at 
shared  use  with  programs  of  numerical  simulation 
allow to obtain by 1-2 iterations the design solution for a 
quadrupole magnet, having eliminated from operation a 
phase  "of  creative  searching"  of  designer.  The 
calculation results are directly applicable for synthesis 
of  profiles  of  quadrupole  lenses  "burdened"  by  even 
harmonics.  The  possibilities  of  a  method  do  not 
eliminate operation with forbidden, odd harmonics too. 
For this purpose it is necessary to take into account the 
curvature of lines corresponding to lines of symmetry of 
an ideal quadrupole (i.e. lower coast of the band) and to 
conduct evaluations for each quadrant.

Fig. 4. The radial dependence of the gradient in the 
lens (R=0.035 m) with the preliminary changed pole for  
various gradient values.
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